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a b s t r a c t

In this paper, we discuss the optimization of Markov decision processes (MDPs) with parameterized
policy, where the state space is partitioned and a parameter is assigned to each partition. The goal
is to find the optimal parameters which maximize the long-run average performance. The traditional
policy iteration is usually inapplicable to parameterized policy because the parameter tuning at different
states are correlated. With some appropriate assumptions and special conditions, we develop a modified
policy iteration type algorithm to find the optimal parameters. Compared with the traditional gradient-
based approaches for MDP with parameterized policy, this policy iteration type approach is much more
efficient. Finally, as an example, we apply this approach to a service rate control problem in closed Jackson
networks. As compared with the gradient-based approach which is trapped into local optimum, our
approach is demonstrated to efficiently find the optimal service rates in global scope.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Markov decision process (MDP) is a fundamental mathemati-
cal model to study the performance optimization of stochastic dy-
namic systems and it has been extensively studied in the literature
(Feinberg & Shwartz, 2002; Guo & Hernandez-Lerma, 2009; Puter-
man, 1994). In the theory of MDP, the policy is a mapping from
the state space to the action space. However, in many practical
problems, the parameterized policy is widely used since its form
is much simpler. The state transition probabilities and rewards of
Markov systemswill change according to the value of these param-
eters. The parameterized policy does not fit the standard definition
of policy in MDP and the traditional approaches, such as the policy
iteration, cannot be directly applied to this problem. Our target is
to find the optimal parameters which maximize the average per-
formance of Markov systems and we call it parameterized Markov
decision process (Baxter & Bartlett, 2001; Xia & Jia, 2013).

In the literature, the gradient-based method is the main thread
to optimize the parameterized policy of Markov systems. As
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the Markov system is stochastic, the stochastic approximation is
widely used. The key problem is transformed to how to efficiently
calculate or estimate the performance gradient of the system per-
formance w.r.t. (with respect to) the parameters. Among all the re-
search efforts for this problem, perturbation analysis (PA) is one
of the successful approaches. PA was proposed by Ho and Cao
(1983) and it can provide an unbiased and strongly consistent es-
timate of the gradient only based on single sample path when the
sampled function is stochastically Lipschitz continuous (Ho & Cao,
1991). Likelihood-ratio (LR) (Glynn, 1990) and simultaneous per-
turbation (SP) (Spall, 1992) are other commonly used approaches
to efficiently estimate the gradient with much fewer samples in
simulation. Thus, these approaches are especially efficient for the
problems with high dimensional parameter vectors. Along the di-
rection of PA, Cao andChen (1997) proposed the direct-comparison
theory of MDP. This is a new sensitivity-based framework to opti-
mize the performance of Markov systems and some efficient algo-
rithms are also proposed (Cao, 2007; Cao & Zhang, 2004). In the
society of artificial intelligence, a so-called policy gradient method
was proposed (Baxter & Bartlett, 2001; Marbach & Tsitsiklis, 2001;
Sutton, McAllester, Singh, & Mansour, 2000) and it can also be uni-
fied in the framework of sensitivity-based approach. However, the
gradient-basedmethods suffer from the intrinsic deficiencies, such
as the slow convergence speed, difficulty of selecting the step-size,
dependence on the initial value of parameters, and being trapped
into a local optimum. For example, in a service rate control prob-
lem discussed in Section 4, we will show that the gradient-based
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algorithm is often trapped into a local optimum, as illustrated
in Fig. 2. Although we can utilize some global search techniques
(Hong &Nelson, 2006) to improve the exploration ability for global
optimum, the deficiencies of gradient-based method cannot be
thoroughly solved.

Therefore, a question follows naturally: Can we use the policy
iteration to solve the parameterizedMDP since the policy iteration
is much more efficient than the gradient-based method and it can
find the global optimum? In this paper, we study a special category
of parameterized MDP, where the state space is partitioned and
an action (parameter tuning) is assigned to each partition. We use
the direct-comparison theory to develop a policy iteration type
algorithm for such parameterized MDP. The key idea of direct-
comparison theory is the difference equation, which quantifies the
performance difference of Markov systems under any two policies
or parameter settings (Cao, 2007). Difference equation gives a
straightforward perspective to study the relation between the
system performance and parameters. The performance difference
may provide more sensitivity information than the performance
gradient. With the difference equation as a basis, we can clearly
analyze the optimization of parameterized MDP and obtain the
sufficient conditions to develop the policy iteration algorithm. This
gives us a new direction to study the parameterized MDP, besides
the traditional gradient-basedmethods. Finally, as an example, we
study a service rate control problem in closed Jackson networks to
illustrate our approach. Numerical experiments are conducted to
demonstrate the algorithm efficiency.

2. Problem formulation

Consider a discrete time Markov chain X := {Xt , t = 0, 1,
2, . . .}, where Xt is the system state at time epoch t . The state
space S is assumed finite. Without loss of generality, we denote
S := {1, 2, . . . , S}, where S equals the size of the state space. The
Markov chain is controlled by a parameterized policy (Baxter &
Bartlett, 2001; Bhatnagar, Sutton, Ghavamzadeh, & Lee, 2009) and
the parameters are denoted as a vector θ := (θ1, θ2, . . . , θk) in a
k-dimensional real number space Rk. The parameters θ affect the
state transition probability and the reward function.Wedenote the
state transition probability as pθ(s′|s) and the reward function as
f θ(s), s, s′ ∈ S.

Inmany cases, the effects of parameters (θ1, θ2, . . . , θk)on tran-
sition probabilities p(·|s) and f (s) are decomposable. That is, if we
change the value of one parameter, say θi, it affects only part of
transition probabilities p(·|s)’s and reward functions f (s)’s. For ex-
ample, consider a service rate control problem in a closed Jackson
network with 3 servers and 6 customers (the detailed formulation
of a closed Jacksonnetwork can be referred to Section 4 andGordon
& Newell, 1967). We want to optimize the service rates of server 1.
Thus, the parameter θi is the load-dependent service rate µ1,i, i =

1, 2, . . . , 6. The system state s is a vector representing the queue
length (include the customer being served) of these 3 servers. Sup-
pose the reward function is f θ(s) = s(1) + µ1,s(1), where s(1) is
the first element of state vector s (i.e., the queue length of server
1). If we change the value of parameter θ2, i.e., µ1,2, the transition
probabilities p(·|s)’s and reward function f (s)’s are affected only
when s ∈ {(2, 0, 4), (2, 1, 3), (2, 2, 2), (2, 3, 1), (2, 4, 0)}, where
the queue length of server 1 is 2. For other system states, such as
s = (1, 3, 2) or s = (4, 1, 1), the change of parameterµ1,2 will not
affect the value of p(·|s) or f (s). Therefore, we can have the follow-
ing definition to partition the state space S.

Definition 1. Si is defined as the set of states s whose transition
probabilities p(·|s) and reward function f (s) are affected by θi, i =

1, 2, . . . , k.

Different parameters θi’s have different Si’s and we have the
following assumption

Assumption 1. Si’s are mutually exclusive, i.e., Si ∩ Sj = ∅ when
i ≠ j and i, j = 1, 2, . . . , k.

Assumption 1 means that the state space S can be partitioned by
parameters θ and every state’s transition probability p(·|s) and
reward function f (s) are controlled by only one parameter θi,
where s ∈ Si. Therefore, we can further denote pθ(·|s) and f θ(s)
as pθi(·|s) and f θi(s) respectively, where s ∈ Si.

Usually, the partition results of Si’s are not affected by the value
of parameters θ. This is determined by the problem structure. That
is, we have the following assumption.

Assumption 2. The value change of parameters θ does not affect
the structure of Si’s, i = 1, 2, . . . , k.

For completeness, we further define S0 as the set of states whose
transition probability and reward function are not affected by the
parameters θ. With Assumptions 1 and 2, we see that the state
space S is partitioned as a series of subsets Si’s. That is, S =

S0 ∪ S1 ∪ · · · ∪ Sk and Si ∩ Sj = ∅, i, j = 0, 1, . . . , k. The transition
probability pθi(·|s) and the reward function f θi(s) are affected only
by the parameter θi and independent of other θj’s, where s ∈

Si. Still use the aforementioned service rate control problem as
an example. The parameter θi is the load-dependent service rate
µ1,i, i = 1, 2, . . . , 6. The state space S is partitioned as a series of
subsets according to θi’s. That is S = S0 ∪ S1 ∪ · · · ∪ S6, where
S0 = {(0, 0, 6), (0, 1, 5), (0, 2, 4), (0, 3, 3), (0, 4, 2), (0, 5, 1),
(0, 6, 0)}, S1 = {(1, 0, 5), (1, 1, 4), (1, 2, 3), (1, 3, 2), (1, 4, 1),
(1, 5, 0)}, . . . , S5 = {(5, 0, 1), (5, 1, 0)}, S6 = {(6, 0, 0)}.

The steady state probability of the Markov system staying at
state s is denoted asπ(s) andπ := (π(1), π(2), . . . , π(S)) is a row
vector. The long-run average performance of the Markov system is
denoted as η. To reflect the effect of parameter θ, we rewrite π and
η as πθ and ηθ , respectively. For ergodic chains, ηθ can be written
as follows.

ηθ
= lim

T→∞

1
T
E


T−1
t=0

f θ(Xt)


, (1)

which is independent of the initial state X0. Obviously, we can
rewrite the above definition as

ηθ
=


s∈S

π θ(s)f θ(s) = πθf θ, (2)

where f θ
:= (f θ(1), f θ(2), . . . , f θ(S))T is a corresponding column

vector. We denote Pθ as the corresponding transition probability
matrix. We have Pθe = e, πθPθ

= πθ , and πθe = 1, where e is an
S-dimensional column vector of 1.

The value domain of parameter θi can be a real-number interval
denoted as Di, i = 1, 2, . . . , k. Thus, the value domain of θ is de-
noted asD := D1×D2×· · ·×Dk, where× is the Cartesian product.
Our goal is to find the optimal parameter θ∗ which maximizes the
average performance of the parameterizedMDP. This optimization
problem is mathematically formulated as below.

θ∗
= argmax

θ∈D
{ηθ

}. (3)

Assumptions 1 and 2 limit our study to a special category of pa-
rameterized MDP, where the state space is partitioned and a pa-
rameter to be tuned is assigned to each partition. Please note, our
parameterized MDP problem is different from another parameter
optimization problem called LSPI (Least Squares Policy Iteration) in
MDP. LSPI aims to find the optimal parameters (weights) of the ba-
sis functions to approximate the value function (Lagoudakis & Parr,
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