FISEVIER

Contents lists available at ScienceDirect

Mechanical Systems and Signal Processing

journal homepage: www.elsevier.com/locate/ymssp

Enhancing vehicle cornering limit through sideslip and yaw rate control

Qian Lu^a, Pierangelo Gentile^a, Antonio Tota^a, Aldo Sorniotti^{a,*}, Patrick Gruber^a, Fabio Costamagna^a, Jasper De Smet^b

ARTICLE INFO

Article history:
Received 6 July 2015
Received in revised form
21 October 2015
Accepted 20 November 2015
Available online 21 December 2015

Keywords:
Direct yaw moment control
Fully electric vehicle
Yaw rate and sideslip control
Phase-plane analysis
Singular value decomposition
Enhanced Sport Mode

ABSTRACT

Fully electric vehicles with individually controlled drivetrains can provide a high degree of drivability and vehicle safety, all while increasing the cornering limit and the 'fun-to-drive' aspect. This paper investigates a new approach on how sideslip control can be integrated into a continuously active yaw rate controller to extend the limit of stable vehicle cornering and to allow sustained high values of sideslip angle. The controllability-related limitations of integrated yaw rate and sideslip control, together with its potential benefits, are discussed through the tools of multi-variable feedback control theory and non-linear phase-plane analysis. Two examples of integrated yaw rate and sideslip control systems are presented and their effectiveness is experimentally evaluated and demonstrated on a four-wheel-drive fully electric vehicle prototype. Results show that the integrated control system allows safe operation at the vehicle cornering limit at a specified sideslip angle independent of the tire-road friction conditions.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Fully electric vehicles with individually controlled electric motor drives provide significant benefits in terms of vehicle cornering response. In particular, the control of the left-to-right and front-to-rear wheel torque distributions, also called torque-vectoring or direct yaw moment control, has been shown to be beneficial in: i) shaping the understeer characteristic (i.e., the graph of steering wheel angle against lateral acceleration) [1,2] in quasi-static conditions (i.e., when driver inputs are slowly changing), including non-zero longitudinal accelerations; and ii) enhancing the transient cornering response through the reduction of the delays between steering wheel angle and yaw rate, the decrease of the yaw rate and sideslip overshoots, and the increase of the yaw rate damping [1]. With respect to ii), the precise controllability of the individual wheel torques, together with the higher bandwidth typical of electric motor drives and their capability of generating both positive and negative torques, allows better dynamic performance in comparison with conventional stability control systems based on the actuation of the friction brakes [3,4].

Several controllers have been proposed for the direct yaw moment control of fully electric vehicles with multiple motors, such as proportional integral derivative (PID) controllers running in parallel with non-linear feedforward contributions [1], linear quadratic regulators [5,6], and various configurations of sliding mode control [7,8], each of them with specific

a University of Surrey, United Kingdom

b Flanders' DRIVE, Belgium

^{*} Corresponding author. Tel.: +44 1483 689688. E-mail address: a.sorniotti@surrey.ac.uk (A. Sorniotti).

algorithm

Nomenclature K_p pro			proportional gain
		K_r	yaw rate controller
Subscrip	ots	K_s	H_{∞} optimal controller
		K_{β}	sideslip angle controller
'LF'	left front wheel	K_{∞}^{ρ}	final controller formulation
'RF'	right front wheel	L ∞	vehicle wheelbase
'LR'	left rear wheel	m	vehicle mass
'RR'	right rear wheel	M_z	reference control yaw moment
'F'	front axle	$M_{z,actual}$	actual yaw moment applied to the vehicle
ʻR'	rear axle	$M_{z,r}$	yaw moment contribution related to yaw rate
'k'	a generic discrete parameter	1 v1 z,r	control
		$M_{z,r,FB}$	feedback part of $M_{z,r}$
Symbols	S	$M_{z,r,FF}$	feedforward part of $M_{z,r}$
		$M_{z,\beta}$	yaw moment contribution related to sideslip
a, b	front and rear semi-wheelbases	*	control
a_x	longitudinal acceleration	$M_{z,\beta,lim}$	threshold of $M_{z,\beta}$ for activating the reference
a_{y}	lateral acceleration		yaw rate ramp
$a_{y,max}$	maximum reference value of lateral acceleration	N_r , N_β ,	N_{δ} stability derivatives in the yaw moment
	$\overline{D}_{x,k}$ and W process equation matrices in the	,	balance equation
	extended Kalman filter	r, r	yaw rate, yaw acceleration
С	stiffness parameter of the brush-type model of	r_{LUT}	yaw rate output from the look-up table
	the tires	r_{ref}	reference yaw rate
D_a	damping ratio of the actuators	ref	reference vector
e "	error vector		worst reference direction, best reference
e_r	yaw rate error	1, 2,	direction, matrix with the worst and best
e_{β}	sideslip angle error		reference directions according to the singular
e_1, e_2, E	E first output singular vector, second output		value decomposition
1, 12,	singular vector, singular vector matrix within	S	Laplace operator or abbreviation for second
	the singular value decomposition of the sen-	S	closed-loop sensitivity function
	sitivity function	SR	slip ratio
F_x	longitudinal tire force	t	time
F_y	lateral tire force	T	track width
F_z	vertical tire force	T_i	integral parameter
$F_{z,STATIC}$	static vertical load	T_I , T_O	input and output complementary sensitivity
G_a	plant transfer function	-17 - 0	functions
G_{M_z}	transfer function (with components $G_{M_z,r}$ and	и	plant input
IVIZ	$G_{M_z,\beta}$) from the actual yaw moment to		I first output singular vector, second output
	vehicle states	1, 2,	singular vector, singular vector matrix within
G_p	transfer function (with components $G_{p,r}$ and		the plant singular value decomposition
p	$G{p,\beta}$) from the reference yaw moment to	ν	vehicle speed
	vehicle states	V^H	input singular vector of the plant
G_{s}	transfer function of the shaped plant	W_1, W_2	pre- and post- compensators
G_{δ}	transfer function (with components $G_{\delta,r}$ and		v_k extended Kalman filter process and
	$G_{\delta,\beta}$) from steering angle to vehicle states	W K CITE	measurement noises
H ₁ ., D ₁ .,	$\overline{D}_{z,k}$ and Z measurement equation matrices of	w_{β}	weighting factor for sideslip estimation
K, K,	the extended Kalman filter	x	state vector
H_{RC}	roll center height		Y_{δ} stability derivatives in the lateral force bal-
H_{ROLL}	vertical distance between center of gravity and	-1, -p,	ance equation
1-KULL	roll center	Z	output vector
I	identity matrix	α , α_{sl}	slip angle and sliding limit slip angle
j	imaginary unit	$\beta, \dot{\beta}$	sideslip angle, sideslip rate
J_z	yaw mass moment of inertia	$\hat{\beta}$	estimated sideslip angle
l_p	half-length of tire contact patch	$\hat{\hat{eta}}_{ extit{EKF}}$	sideslip angle estimated by the extended
1 7	slope for the increase of the reference yaw rate	PEKF	Kalman filter
K _{ramp}	after the de-activation of the sideslip	$\beta \dot{\beta}$	values of sideslip angle and sideslip rate at the
	controller	eta_{eq},eta_{eq}	equilibrium for the passive vehicle
k _{ROLL}	suspension roll stiffness	В	$\dot{\beta}_{eq,Sport}$ values of sideslip angle and sideslip
K _{ROLL} K	control system matrix	Peq,Sport,	$p_{eq,Sport}$ values of sideship angle and sideship rate at the equilibrium for the controlled
K_{corr}	parameter of the yaw rate correction		vehicle in Sport Mode
Corr	algorithm		vernere in sport wode

Download English Version:

https://daneshyari.com/en/article/6955276

Download Persian Version:

https://daneshyari.com/article/6955276

<u>Daneshyari.com</u>