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a b s t r a c t

The dynamic stiffness properties of automotive hydraulic bushings exhibit significant
amplitude sensitivity which cannot be captured by linear time-invariant models. Quasi-
linear and nonlinear models are therefore proposed with focus on the amplitude sensi-
tivity in magnitude and loss angle spectra (up to 50 Hz). Since production bushing model
parameters are unknown, dynamic stiffness tests and laboratory experiments are utilized
to extract model parameters. Nonlinear compliance and resistance elements are incor-
porated, including their interactions in order to improve amplitude sensitive predictions.
New solution approximations for the new nonlinear system equations refine the multi-
term harmonic balance term method. Quasi-linear models yield excellent accuracy but
cannot predict trends in amplitude sensitivity since they rely on available dynamic stiff-
ness measurements. Nonlinear models containing both nonlinear resistance and com-
pliance elements yield superior predictions to those of prior models (with a single non-
linearity) while also providing more physical insight. Suggestion for further work is briefly
mentioned.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Hydraulic elastomeric devices are often employed in automotive powertrain and suspension systems because of their
unique dynamic properties, leading to both vibration isolation and motion control [1–18]. These properties are achieved by
an internal fluid system working in tandem with the elastomeric structure of a bushing. Despite some similarities with
hydraulic engine mounts that have been extensively studied [1–9], the behavior of hydraulic bushings is quite different and
merits its own in-depth studies [10–18]. Prior, though limited, investigations of these devices have largely focused on
simpler transfer function type formulations based on the linear time-invariant (LTI) system theory [10–16]. For instance,
Arzanpour and Golnaraghi [12] developed a reduced order linear system model for a hydraulic bushing which attempts to
capture some aspects of the physics, such as fluid resistance, compliance, and inertance. Chai et al. [13–16] further devel-
oped the linear models for frequency and time domain characteristics for a laboratory bushing device and even introduced a
nonlinear fluid resistance term [17]. Fredette et al. [18] recently developed a new laboratory experiment to measure the
nonlinear fluid compliance of hydraulic bushing pumping chambers.
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Under harmonic excitation, hydraulic bushings exhibit significant amplitude dependent behavior [10,11,14–18], which
cannot be described by the linear time-invariant system theory. Both the mechanical (rubber path) stiffness and fluid
compliance elements of the bushings arise from the molded interfacial elastomeric material. Since most elastomeric
materials exhibit inelastic behavior, nonlinear fluid compliance behavior has been suggested, [4,5,7–9,17,18] but the
amplitude sensitivity has never been mathematically described. The chief goal of this article is therefore to propose new or
improved quasi-linear and nonlinear reduced-order hydraulic bushing models, predict amplitude sensitivity characteriza-
tion under harmonic loading, and experimentally validate alternate nonlinear models. Additionally, the prior work [17, 19,
20] on the multi-term harmonic balance method will be extended and refined to explain the underlying physics.

2. Problem formulation

Modeling of hydraulic bushings is challenging due to their complexity that arises due to the interacting nonlinear design
features, nonlinear materials, and variation in production bushing designs. Hydraulic bushings are typically constructed of
an elastomeric material constrained by a metal inner and outer sleeve, as shown in Fig. 1. Fluid-filled internal chambers
deform when the bushing is displaced, pumping the fluid through a long passage between the chambers. A Kelvin–Voigt
(linear system) model is assumed for the elastomeric structural path, while this article focuses on nonlinear fluid elements.

The lumped parameter modeling method is suitable for the fluid system contained within hydraulic bushings at low
frequencies (up to 50 Hz), where the corresponding wavelength is much larger than the bushing dimensions. For the
example case, model parameters include fluid compliance, C, and effective pumping area, A, for each chamber, the fluid
resistance, Ri, and inertance, Ii, of the single inertia track, and the stiffness, Kr , and viscous damping coefficient, cr , of the
rubber structure within the device. The state variables of the system include the absolute pressure, p, in each chamber (left
(L) and right (R)) as well as the volume flow rate of fluid between the chambers, qi. The outer sleeve is considered to be
constrained, so the system is excited by the displacement of the inner sleeve, x tð Þ; the force transmitted to the outer sleeve,
FT , is the response.

Tractable lumped parameter models are needed to yield reasonable predictions of amplitude sensitive dynamic stiffness,
which is a useful metric for design and diagnostic purposes, and to provide physical insight. Accordingly, the specific
objectives of this article are as follows. (1) Propose and experimentally validate quasi-linear and nonlinear bushing models
(with nonlinear resistance and compliance elements) which capture amplitude sensitivity in the example case of a pro-
duction bushing with a single inertia track as displayed in Fig. 1. (2) Refine and utilize the semi-analytical multi-term
harmonic balance method (MHBM) to construct dynamic stiffness spectra and gain physical insight into the role and
interaction of nonlinearities in the model. The scope of the work is limited to sinusoidal excitation only with peak-to-peak
displacement amplitudes of 0.1 mm, 0.5 mm, 1.0 mm, and 2.0 mm over a frequency range from 1 to 50 Hz to capture the
amplitude sensitivity of the tuned dynamic properties.

The bushing is characterized by a cross-point dynamic stiffness, assuming a sinusoidal excitation at angular frequencyΩ,
where xm is the mean component and xa is the peak-to-peak excitation amplitude,

x tð Þ ¼ xmþxa
2

sin Ωtð Þ: ð1Þ

The force transmitted to a rigid base is calculated by summing the contributions from parallel structural and fluid paths.
The force through the elastomeric structural path may be directly calculated, Fr ¼ Krxþcr _x, while the force through the fluid

Fig. 1. Hydraulic bushing model. FT is the transmitted force, x(t) is the displacement excitation, Kr is the stiffness and cr is the damping of the rubber path.
For the pumping chambers, C is the fluid compliance, A is the effective pumping area, and p is the absolute pressure in each chamber, right (R) and left (L).
In the inertia track, Ii is the fluid inertance, Ri is the fluid resistance and qi is the volume flow rate.
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