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a b s t r a c t

This paper considers a class of interconnected nonlinear systems with reconfigurable physical couplings.
Under decentralized control laws, a fault recoverability condition is providedwhich reveals the capability
of the interconnected system to tolerate the faults under given couplings. Consequently three fault
tolerant control methods are proposed that rely on both control reconfiguration and coupling topology
reconfiguration. The couplings’ effect on system performance is analyzed from the overall system point
of view. An example for a system with three pendulums is taken to illustrate the theoretical results.
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1. Introduction

Fault tolerant control (FTC) aims at guaranteeing the system
goal to be achieved in spite of faults (Blanke, Kinnaert, Lunze,
& Staroswiecki, 2006; Jiang, Staroswiecki, & Cocquempot, 2006;
Tao, Chen, Tang, & Joshi, 2004; Zhang & Jiang, 2008). A fault is
labeled as recoverable if there exists a control law such that the
post-fault system satisfies the design specifications (Staroswiecki,
2008; Wu, Zhou, & Salomon, 2000; Zhang & Jiang, 2003). For non-
decomposable specifications, the FTC design of an interconnected
system must be considered for the overall system rather than any
individual subsystem (Patton et al., 2007). For an interconnected
system, two main kinds of couplings among subsystems can be
considered (Patton et al., 2007): C1. Physical couplings where all
couplings are physical and are independent from the individual
control law of each subsystems, and thus cannot be changed or re-
moved arbitrarily; C2. Network connectionswhere each subsystem
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communicates with others through network, e.g., multi-agent sys-
tems. Interactions among subsystems are represented through the
control channels of each subsystem, and thus can be designed and
changed.

For system with C1 coupling, the FTC law of each subsys-
tem often consists of two parts, see Gandhi and Mhaskar (2009),
Panagi and Polycarpou (2013), Panagi and Polycarpou (2011), Pat-
ton et al. (2007) and Tong, Huo, and Li (2014): one is for the FTC
of self-dynamics, and another one compensates for the coupled-
dynamics. This leads to a distributed control structure where the
coupling term is treated using a robustness approach. There are
two limitations behind these methods: (1) exchange of states in-
formationwould increase communication burdens and bring some
uncertainties, e.g. delay, also for complex nonlinear structure, the
coupling term may not be compensated for easily; (2) the cou-
plings’ effect is analyzed locally in each subsystem, this might not
reveal effectively the relations between couplings and FTC perfor-
mance of the overall system. Moreover the reconfigurable physical
coupling that might be present in some practical systems is also
not considered.

For systemwith C2 coupling, FTCmethods utilize the coupling’s
effect actively and globally, i.e., when one subsystem is faulty,
both the coupling topology and control laws of other subsystems
are reconfigured, see Semsar-Kazerooni and Khorasani (2008),
Staroswiecki and Moradi Amani (2014), Tousi and Khorasani
(2012) and Yang, Staroswiecki, Jiang, and Liu (2011). It can be seen
that such a FTC idea emphasizes more the importance of coupling
effect than that for C1 coupling.
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This paper considers a class of interconnected nonlinear sys-
tems with C1 coupling that may be reconfigurable. Inspired by the
FTC idea for systems with C2 coupling, a fault recoverability con-
dition and three FTC methods relying on both control reconfigura-
tion and coupling topology reconfiguration are proposed based on
the cyclic-small gain approach thatwas recently developed in Jiang
andWang (2008) and Liu, Hill, and Jiang (2011). Such an approach
is very general and helps to provide a decentralized control struc-
ture (each subsystem’s control law only uses its own states which
does not compensate for the coupled-dynamics) and to deeply an-
alyze the coupling’s effect on fault recoverability and FTC from the
overall system point of view.

In the rest of the paper: Section 2 provides a decentralized con-
trol method, Sections 3 and 4 address the issues of fault recover-
ability and fault tolerant control respectively, Section 5 gives an
illustrative example followed by some concluding remarks in Sec-
tion 6.

2. Decentralized control design

A directed graph (digraph for short) is denoted as G = (N , E),
whereN = {1, 2, . . . , n} is the set of nodes and E is the set of arcs,
(j, i) ∈ E denotes an arc fromnode j to node i. A path inG fromnode
i0 to node ik is a sequence of arcs (i0, i1)(i1, i2) · · · (ik−1, ik), where
nodes iι ∈ N and arcs (iι, iι+1) ∈ E , ι = 0, 1, . . . , k−1, k ≥ 1. The
connection behavior of an interconnected system is described by a
digraph G, where node i models subsystem i, an arc (j, i) indicates
that subsystem j is a neighbor of subsystem i in the sense that
subsystem i is coupled with subsystem j. Also suppose that there
exist n candidate topologies denoted as Gi, i ∈ N . Denote Nj(i) as
the set of neighbors of subsystem i under topology Gj.

Consider an interconnected system with m subsystems and n
candidate coupling topologies. The dynamics of subsystem i under
topology Gk takes the form:

ẋi = g0i(xi)+ gi(xi)ui +


j∈Nk(i)

hij(xj), i ∈ M (1)

where M , {1, 2, . . . ,m}, xi ∈ ℜ
ni is the measurable state, ui ∈

ℜ
pi is the control input. g0i +giui represents the self-dynamicswith

g0i and gi being smooth nonlinear functions. hij(xj) represents the
coupled-dynamics w.r.t. subsystem j, hij = 0 if j ∉ Nk(i), hij(xj) is
Lipschitz with hij(0) = 0, i.e., |hij(xj)| ≤ lij|xj| for lij > 0.

Assumption 1. There exist smooth, proper, and positive definite
functions Vi : ℜ

ni → ℜ and constants ai > 0, bi > 0, di > 0,
λi > 0, such that ∀i ∈ M

ai|xi|2 ≤ Vi(xi) ≤ bi|xi|2 (2)dVi

dxi

 ≤ di|xi|

inf
ui∈ℜ

pi


dVi

dxi
(g0i + giui)+ λiVi


< 0, ∀xi ≠ 0.

For each ε > 0, ∃δ > 0 such that if |xi| < δ, xi ≠ 0, then ∃ui with
|ui| < ε such that dVi

dxi
(g0i + giui) ≤ −λiVi.

Assumption 1 implies that without coupling, each subsystem
has a control Lyapunov function satisfying the small control property
(Sontag, 1989). According to the universal formula for stabilization,
the decentralized state-feedback control law ui, i ∈ M, is designed
as:

ui(xi) =

−

Λ1 +


Λ2

1 + |Λ2|
4

|Λ2|
2

(Λ2)
⊤ Λ2 ≠ 0

0 Λ2 = 0

(3)

whereΛ1 ,
dVi
dxi

g0i + λiVi,Λ2 ,
dVi
dxi

gi. Consequently,

dVi

dxi
(g0i + giui) ≤ −ci|xi|2

where ci ,
λi
ai
. For a fixed Vi, the value of ci depends on λi that is

often impossible to be designed arbitrarily large. There exists an
admissible ui with maximal λmax

i under which a maximal decay
rate cmax

i w.r.t. Vi is reached.
The time derivative of Vi along the solution of (1) is

V̇i ≤ −(ci − θi)|xi|2, 0 < θi < ci

∀|xi| ≥


j∈Nk(i)

dilij|xj|

θi
. (4)

Note that inequality (4) can be derived from

Vi ≥ max
j∈Nk(i)


bi(mkidilij)2

ajθ2i
Vj


wheremki is the number of subsystems in Nk(i). It can be seen that
if θi = ci − ∆, where ∆ is an infinite small number, then the gain
from Vj to Vi is minimal. Define

γij ,
bi(mkidilij)2

aj(ci)2
, γmin

ij ,
bi(mkidilij)2

aj(cmax
i )2

.

Theorem 1. Under Assumption 1, there exist decentralized control
laws ui(xi), ∀i ∈ M, such that the interconnected system (1) is
asymptotically stable at the origin if

γmin
i1 i2 γ

min
i2 i3 · · · γmin

ir i1 < 1 (5)

for all ij ∈ M, ij ≠ ij′ if j ≠ j′.

Condition (5) shows the couplings’ effect on the stability of the
whole system rather than any individual subsystem as in Panagi
and Polycarpou (2011), which means that the composition of the
minimal gains along every cycle is less than 1. Such a condition
depends on two factors: the cycles in the coupling topology and
individual control design. In each cycle, it allows for large gains
of some subsystems (resulting from small decay rate or large
coupling parameters) being compensated by small gains of other
subsystems (resulting from large decay rate and small coupling
parameters). Not all gains but only gains in each cycle need to be
considered, the number of cycles depends on the coupling topology
Gk. Therefore Condition (5) is not restrictive and can be achieved by
both individual control design and coupling topology design. Such
a condition reveals a trade-off that should be achieved among all
subsystems, and relaxes the design in each individual subsystem.
It even disappears for the system without cycle in the coupling
topology, e.g. the tree structure.

In order to prove Theorem 1, the following lemma is given
which can be obtained straightly from the cyclic small gain
theorem in Liu et al. (2011).

Lemma 1. Consider an interconnected system ẋi = ζi(x), i ∈ M,
where xi ∈ ℜ

ni , x = [x⊤

1 , . . . , x
⊤
m], ζi is continuous and locally Lip-

schitz. If for each subsystem i, there exists a function Vi : ℜ
ni →

ℜ≥0 that satisfies (2) and Vi(xi) ≥ maxi∈M−{i}(γij(Vj(xj))) H⇒
dVi
dxi
ζi(x) ≤ −ιiVi(xi), ιi > 0, then the interconnected system is asym-

ptotically stable at the origin if γi1 i2γi2 i3 · · · γir i1 < 1 for all ij ∈

M, ij ≠ ij′ if j ≠ j′. �
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