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a b s t r a c t

Rolling element bearings are commonly used in machines to provide support for rotating
shafts. Bearing failures may cause unexpected machine breakdowns and increase economic
cost. To prevent machine breakdowns and reduce unnecessary economic loss, bearing faults
should be detected as early as possible. Because wavelet transform can be used to highlight
impulses caused by localized bearing faults, wavelet transform has been widely investigated
and proven to be one of the most effective and efficient methods for bearing fault diagnosis.
In this paper, a new Gauss–Hermite integration based Bayesian inference method is pro-
posed to estimate the posterior distribution of wavelet parameters. The innovations of this
paper are illustrated as follows. Firstly, a non-linear state space model of wavelet parameters
is constructed to describe the relationship between wavelet parameters and hypothetical
measurements. Secondly, the joint posterior probability density function of wavelet para-
meters and hypothetical measurements is assumed to follow a joint Gaussian distribution so
as to generate Gaussian perturbations for the state space model. Thirdly, Gauss–Hermite
integration is introduced to analytically predict and update moments of the joint Gaussian
distribution, fromwhich optimal wavelet parameters are derived. At last, an optimal wavelet
filtering is conducted to extract bearing fault features and thus identify localized bearing
faults. Two instances are investigated to illustrate how the proposed method works. Two
comparisons with the fast kurtogram are used to demonstrate that the proposedmethod can
achieve better visual inspection performances than the fast kurtogram.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Rolling element bearings are frequently used in various machines to support rotating shafts. Their failures may cause
unexpected machine breakdowns and thus result in economic loss. To prevent bearing failures, bearing fault diagnosis should
be conducted as early as possible. If a bearing has a defect on either an outer race or an inner race, impulses are repeatedly
generated by rollers striking the defect surface [1,2]. Because of slippage of rollers, these impulses are not strictly periodic but
slightly random [3].

Besides spectral kurtosis [4] and its variants [5–8], wavelet transform [9,10] has proven to be one of the most effective and
efficient methods for bearing fault diagnosis. The major idea of wavelet transform aims to calculate the inner product between
an artificial wavelet at different translations and scales and a signal to be analyzed. If the artificial wavelet is properly chosen to
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be highly similar with impulses caused by localized bearing faults, the inner product operation can highlight impulses hidden
in bearing fault signals. Additionally, optimization of wavelet parameters attracts much attention in the past years so as that
wavelet transform can achieve better visual inspection performances. One of the most popular artificial wavelets is Morlet
wavelet generated by the frequency modulation of a Gaussian window. Lots of studies [11–16] have been conducted to
demonstrate the effectiveness and efficiency of Morlet wavelet. In addition to Morlet wavelet, anti-symmetric real Laplace
wavelet (ARLW) [17] or impulse response wavelet (IRW) [18] has been used to diagnose different bearing faults. Particularly, in
recent work [19], anti-symmetric real Laplace wavelet was used to approximate each of impulses caused by bearing outer race
or inner race defects. The reconstruction of the anti-symmetric real Laplace wavelets peeled off from bearing fault signals and
its comparison with a strict periodic multiple-transient model [20] experimentally demonstrated that bearing fault signals are
not periodic but slightly random. Besides, the observations obtained from the results experimentally show that the anti-
symmetric real Laplace wavelet is highly similar with impulses caused by localized bearing faults.

To further explore the anti-symmetric real Laplace wavelet, a novel Gauss–Hermite integration based Bayesian inference
method is proposed in this paper to estimate the posterior distribution of anti-symmetric real Laplace wavelet parameters and
find optimal wavelet parameters. The idea of Bayesian inference on the posterior distribution of wavelet parameters was newly
reported in Refs. [21,22], in which a general particle filter based Bayesian inference method and its improvements were proposed.
Even though the general particle filter based Bayesian inference can achieve a good visual inspection performance for bearing fault
diagnosis, it requires many random particles to infer the posterior distribution of wavelet parameters, which results in extensive
calculation times. Compared with the general particle filter based Bayesian inference methods, the advantages of the novel Gauss–
Hermite integration based Bayesian inference method are summarized as follows. Firstly, only a few sigma points established by
Hermite polynomial are used to propagate through a non-linear state space model proposed in this paper. It means that calcu-
lation times used in this paper are largely shortened. Secondly, the Gauss–Hermite integration based Bayesian inference method is
based on an assumption that the joint posterior distribution of wavelet parameters and hypothetical measurements follows a joint
Gaussian distribution. The reasons for the use of the joint Gaussian distribution are explained as follows. Recalling the fast kur-
togram, it is known that it can be used to find an approximately optimal filter for retaining one of the resonant frequency bands so
as to extract bearing fault features. Simply speaking, the fast kurtogramwell provides an initial guess for finding a pair of optimal
filter parameters including center frequency and bandwidth. Because initial parameters of the non-linear state space model in this
paper are able to be initialized by the fast kurtogram, it is reasonable to use the joint Gaussian distribution to generate Gaussian
perturbations around the initial parameters of the non-linear state space model for finding optimal anti-symmetric real Laplace
wavelet parameters. Moreover, the analytical expression of the posterior distribution of anti-symmetric real Laplace wavelet
parameters is determined. It means that the predicting and updating equations of the distribution of wavelet parameters ana-
lytically exist. Additionally, it should be noted that the first hypothetical measurement is an initial kurtosis value provided by the
fast kurtogram. Other hypothetical measurements are generated by monotonically increasing extrapolations of the first hypo-
thetical measurement. Because the other hypothetical measurements are higher than the initial hypothetical measurement
provided by the kurtogram, the posterior estimate of wavelet parameters by using the proposed method can result in optimal
wavelet filter parameters, which are better than that provided by the fast kurtogram. Other possible hypothetical measurement
metrics are smoothness index [16], sparse measurement [14], Shannon entropy [23], etc., which are potentially used to replace the
kurtosis metric used in this paper. Thirdly, optimal wavelet parameters are easily found according to the mean of the posterior
distribution of wavelet parameters, namely the mean of the joint Gaussian distribution. Fourthly, resampling methods are not
required in this paper because the weights of the sigma points used in the novel Gauss–Hermite integration based Bayesian
inference method are deterministically established and do not degenerate over time.

The organization of this paper is given as follows. Anti-symmetric real Laplace wavelet transform and Gauss–Hermite
integration are simply reviewed in Section 2. The novel Gauss–Hermite integration based Bayesian inference method is
proposed in Section 3 to diagnose localized bearing faults. Two instances are studied in Section 4 to illustrate how the
proposed method works. Besides, two comparisons with the fast kurtogram are used to highlight the better visual
inspection performances of the proposed method. Conclusions are drawn in Section 5.

2. Introduction of anti-symmetric real Laplace wavelet transform and Gauss–Hermite integration

2.1. Anti-symmetric real Laplace wavelet transform

Anti-symmetric real Laplace wavelet transform Wcðu; γ;σÞ calculates the inner product between an anti-symmetric real
Laplace wavelet ψ ðtÞ and a real signal cðtÞ to be analyzed [18,20,24]:

Wcðu; γ;σÞ ¼ cðtÞ;ψγ;σðt�uÞ
D E

¼
Z þ1

�1
cðtÞψγ;σðt�uÞdt ¼ cðtÞ � ψγ;σð�tÞ ¼ F �1ðCðf Þ �Ψ ðf ÞÞ; ð1Þ

where Uh i is the inner product operator; � is the convolution operator; F �1 denotes inverse Fourier transform; Cðf Þ and Ψ ðf Þ
are the Fourier transforms of cðtÞ and ψγ;σð�tÞ, respectively; σ and γ are the half-power bandwidth and the center fre-
quency, respectively. Anti-symmetric real Laplace wavelet ψ ðtÞ is defined as follows:

ψγ;σðtÞ ¼ e�πσ tj j sin ð2πγtÞ: ð2Þ
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