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A continuous, low-complexity, static, state-feedback controller is proposed for strict-feedback systems
with deadzone input nonlinearity and disturbances, utilizing the Prescribed Performance Control
methodology. The scheme achieves preselected bounds on the transient and steady state output error
performance despite the uncertainty in system nonlinearities and deadzone characteristics. Regarding
the latter, a general class of admissible deadzones is considered compared to the current state-of-the-
art, permitting nonsmooth and even locally decreasing behavior outside the dead-band. Furthermore,
approximating structures, i.e., neural networks, fuzzy systems, etc., are not utilized and, moreover, the
backstepping “explosion of complexity” issue is eliminated without residing in filtering, thus deriving
a low-complexity design. The proposed controller evades the construction of a deadzone inverse and
does not employ a special analytical deadzone representation. Simulations are performed to verify the
theoretical findings.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Deadzone actuation is among the most commonly encountered
sources of nonlinearity in real control systems, with typical ex-
amples including mechanical connections, hydraulic servo valves,
piezoelectric translators, electronic circuits and many others. Its
existence is directly related to closed-loop performance deterio-
ration, severe oscillations and even worse, instability phenomena.
Therefore, the deadzone input nonlinearity compensation is an im-
perative to address task. Additionally, from a control viewpoint it
constitutes a very challenging issue, as even linear systems are ren-
dered nonsmooth and nonaffine.

Research in this direction is traced back to Tao and Kokotovic
(1994) where a deadzone inverse function was constructed using
adaptive techniques. In fact, the implicit or explicit utilization
of a deadzone inverse has been the main line of effort in many
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related works, e.g., Cho and Bai (1998), Oh and Park (1998), Tao and
Kokotovic (1994), Zhou, Wen, and Zhang (2006), and Zhou (2008).
To avoid the utilization of a deadzone inverse, other compensation
mechanisms emerged and evolved (Ibrir, Xie, & Su, 2007; Lewis,
Kam Tim, Wang, & Li, 1999; Selmic & Lewis, 2000; Wang, Su, &
Hong, 2004; Zhang & Ge, 2007). A Fuzzy Logic Precompensator
was designed in Lewis et al. (1999) for industrial positioning
systems with linear deadzones. A general procedure to compensate
for nonlinear deadzones using neural networks was proposed
in Selmic and Lewis (2000). Further, Wang et al. (2004) proposed
the representation of the deadzone output as a linear system with
a time-varying gain and a bounded disturbance term, under the
assumption that the deadzone outside the dead-band is linear with
equal slopes. The aforementioned assumption was relaxed in [brir
et al. (2007). However, maximum and minimum bounds on the
deadzone slopes were required to be known. This requirement was
further relaxed in Zhang and Ge (2007) where an adaptive neural
control scheme was developed for unknown nonlinear deadzones,
assuming differentiability outside the dead-band.

A common characteristic of the aforementioned works is that
transient performance cannot be prescribed; only the convergence
of the tracking error to a residual set is established. There
are currently two methodologies in the literature, namely the
Prescribed Performance Control (PPC) and the Funnel Control,
which achieve prescribed performance bounds on the transient
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and steady state behavior of the output tracking error. The Funnel
Control was introduced in Ilchmann, Ryan, and Sangwin (2002) as
an advancement of the adaptive high-gain control methodology,
which replaces the monotonically increasing control gain in the
latter by a time-varying function admitting higher values as
the output error approaches the funnel boundary. For further
details the reader is referred to Ilchmann and Ryan (2008). On
the other hand, the so-called Prescribed Performance Control
(PPC), introduced in Bechlioulis and Rovithakis (2008), utilizes
appropriately defined functions to transform the original system
into one that incorporates the desired performance criteria;
then, a controller is designed to guarantee the boundedness of
the transformed system trajectories. As discussed in Bechlioulis
and Rovithakis (2008) this is a sufficient condition to achieve
the desired performance specifications. In the context of PPC,
solutions have been proposed for various classes of nonlinear
systems (Bechlioulis & Rovithakis, 2008, 2009, 2010, 2011; Hua,
Zhang, & Guan, 2014; Wang & Wen, 2010).

Very recently, inspired by Bechlioulis and Rovithakis (2008,
2009), an adaptive prescribed performance backstepping con-
troller was proposed in Na (2013). The scheme therein guarantees
prescribed transient and steady state performance in the presence
of unknown nonlinear deadzones. However, it suffers from the
“explosion of complexity”, a well-documented issue in the back-
stepping literature, and, moreover, utilizes neural networks that
further complicate design and implementation. In addition, it is
discontinuous and cannot handle deadzones lacking differentiabil-
ity outside the dead-band or exhibiting locally decreasing behav-
ior.In Theodorakopoulos and Rovithakis (2013) preliminary results
on employing the prescribed performance control methodology in
the problem of controlling a class of uncertain strict-feedback sys-
tems having deadzone input nonlinearities with strictly increasing
branches outside the dead-band, were provided. In the presence,
however, of input disturbances the analysis presented in Theodor-
akopoulos and Rovithakis (2013)does not guarantee stability of the
closed loop.

This paper considers the problem of guaranteeing preselected
bounds on the transient and steady state output error performance
for a fairly general class of uncertain strict-feedback systems with
known but arbitrary relative degree, under the presence of a
deadzone input nonlinearity and disturbances. Emphasis is placed
on the admissible class of deadzones which is wider compared to
the current state-of-the-art. Specifically, the deadzone branches
are not required to be differentiable and are even allowed to exhibit
locally decreasing behavior, thus generalizing the results obtained
in Theodorakopoulos and Rovithakis (2013). The aforementioned
attributes are attained via a continuous, static, state-feedback
control law that exhibits remarkably low complexity levels.

Specifically, the proposed controller does not utilize derivatives
of the intermediate control signals, thus evading the major source
of complexity present in relevant controllers obtained via tradi-
tional backstepping procedures. Further, despite the uncertainty in
system nonlinearities and deadzone characteristics, the proposed
controller does not incorporate approximating structures, i.e., neu-
ral networks, fuzzy systems, etc., which complicate the controller
design and implementation. Furthermore, contrary to the con-
trollers reported in the relevant literature, the proposed control
scheme can be directly implemented even in applications when the
derivatives of the desired tracking trajectory are not available be-
forehand, e.g., when the tracking trajectory can only be measured
in real time. Therefore, the extra cost and effort of utilizing addi-
tional mechanisms that produce approximations of the desired tra-
jectory derivatives is completely evaded. Finally, it is worth noting
that the proposed scheme does not construct a deadzone inverse
or utilize a special deadzone analytical representation.

Fig. 1. Graphical representation of (1a) for p(t) = (09 — Po0)e ' + Poo-

To design the aforementioned controller the PPC methodology
was utilized rather than the Funnel Control. This choice is sup-
ported by the fact that a low-complexity control solution has al-
ready been reported in Bechlioulis and Rovithakis (2011) for a
relevant system class of arbitrary relative degree following the PPC
methodology, in the absence, however, of deadzone input nonlin-
earity. On the contrary, to the best of the authors’ knowledge, no
simple controller designed via the Funnel Control approach has
been proposed to handle the considered system class.

The rest of the paper is organized as follows: In Section 2,
preliminary knowledge on the Prescribed Performance Control
methodology is provided, while in Section 3, the main problem
addressed is stated. In Section 4, the main result of this work is
presented and qualitatively analyzed. Further, in Section 5, a sim-
ulation study is performed to demonstrate the effectiveness of the
proposed scheme. Conclusions are provided in Section 6. Finally,
the main result of this work is proven in the Appendix.

2. Prescribed Performance Control preliminaries

It will be clearly demonstrated that the control design is based
on the Prescribed Performance Control methodology which was pi-
oneered in Bechlioulis and Rovithakis (2008) and utilized in Bech-
lioulis and Rovithakis (2009, 2010, 2011, 2014), Theodorakopou-
los and Rovithakis (2014), and Bechlioulis, Theodorakopoulos, and
Rovithakis (2013) to design controllers capable of a priori guaran-
teeing prescribed performance bounds on the transient and steady
state output error for a range of nonlinear system classes. Seeking
a complete and self-contained presentation, this section summa-
rizes preliminary knowledge on the concept of prescribed perfor-
mance control.

In this direction, consider a generic tracking error e(t) € R. Pre-
scribed performance is achieved if the following inequalities are
satisfied for all t > O:

—8p(t) <e(t) < p(t), ife(0) >0, (1a)
—p(t) <e(t) <8p(t), ife(0) <0, (1b)

where § is a non-negative design constant and p : R>g — R.g is
a continuous design function satisfying p < p(t) < p, Vt > 0
for some constants p, p > 0, called performance function (Bech-
lioulis & Rovithakis, 2008). Constant § and function p are utilized
to incorporate the desired performance metrics of e(t). To clearly
illustrate the aforementioned statement, Fig. 1 depicts (1a) for an
exponentially decaying performance function defined as

p(t) = (po — pPoc)e™™ + poo (2)

and a constant § € [0, 1]. The constant p,, > 0 corresponds to
the maximum allowable tracking error at steady state and 4 > 0
to the minimum admissible convergence rate; the maximum over-
shoot is prescribed less than § o (0) = §,09, which may even become
zero by setting § = 0.

Furthermore, consider a continuous function T : (L,U) — R
that is strictly increasing and satisfies lim,_, ;- T(z) = 400 and
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