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In this paper, the steady-state behaviour of discretized terminal sliding mode control is studied. A dis-
crete terminal sliding mode control is designed by discretizing the continuous-time system and then
the steady-state behaviour is analysed in terms of periodic orbits. We have shown that by this dis-
crete terminal sliding mode control the discretized second order system exhibits only period-2 motion in
steady-state. To ensure this, existence and stability conditions of all possible periodic orbits are found out

analytically and shown that only period-2 conditions are satisfied by the state evolution of the discretized
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system in steady-state. Next, a higher order single-input-single-output system is considered and we also
establish that only period-2 motion exists in steady-state.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Sliding mode control (SMC) is one of the robust control tech-
niques that has drawn interest among control communities since
the last four decades due to its ability to reject the disturbance
completely, order reduction, invariance property etc. (DraZenovic,
1969; Utkin, 1977). The other advantages of the SMC are simplic-
ity in design and its implementation. In the early nineties, a new
concept on sliding mode was reported based on the termi-
nal attractor called the terminal sliding mode (TSM) controller
(Venkataraman & Gulati, 1993). In addition to the above proper-
ties, TSM controller guarantees finite time stability of the closed
loop system. The central idea of the controller is to design a nonlin-
ear sliding surface so that finite time convergence of the system is
achieved once the sliding mode is enforced. Since then many devel-
opments in TSM controller have been reported (Chiu, 2012; Huang,
Lin, & Yang, 2005; Man, Paplinski, & Yu, 1994; Man & Yu, 1997;
Yu & Man, 1996). Due to these properties, the SMC and TSM have
been implemented successfully in many practical systems and few
of them can be found in Abidi, Xin, and She (2009), Feng, Zheng,
Yu, and Truong (2009), Li, Zhou, and Yu (2013) and Utkin, Guldner,
and Shi (1999). In practical applications, almost all the controllers
are implemented digitally. The availability of high performance
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digital processors make it possible to implement the continuous
controllers digitally without deteriorating the system response.
However, in the systems where control is implemented digi-
tally not fast enough compared to continuous-time analogy, the
discrete-time design becomes relevant. The discrete-time sliding
mode control (DTSM) is not able to make the system slide on the
surface but within a band called quasi sliding mode band (QSM)
(Gao, Wang, & Homaifa, 1995; Sarpturk, Istefanopulos, & Kaynak,
1987).

In very few papers, the practical implementation issues of
TSM have been addressed. For the first time discretization of
TSM was studied in Janardhanan and Bandyopadhyay (2006). It
has been shown that the system states never go to zero and it
results a periodic behaviour in the system trajectories in steady-
state. Moreover, stability of only period-2 orbit is reported and
no further higher orbits are investigated. Recently, in Galias and
Yu (2012) and Li, Du, and Yu (2014), discretization issues of TSM
controller is studied by discretizing the continuous control law. In
Galias and Yu (2012), authors studied both period-2 and period-4
orbits for the closed-loop system stability for second order system
only. However, no evidence is given for existence of higher orbits
which may affect the stability of the system. The extended version
of discretization of TSM control for a nth order SISO system is
reported in Li et al. (2014).

1.1. Motivation

Mainly two approaches are used to implement the controller
in practical systems. First, continuous controller is designed for
continuous-time system and then it is implemented in real plant
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in discrete manner. However, simply discretization of the contin-
uous control never achieves desired objective if the control is not
applied very fast. The results in Galias and Yu (2012) and Li et al.
(2014) are based on this approach. Secondly, design the discrete
controller by discretizing the continuous-time system and then ap-
ply it at discrete instants. This technique is more effective as the
controller is applied at discrete instants only. This approach re-
quires discretized model of continuous-time nonlinear system. So,
in this paper, we have adopted this methodology to design the dis-
crete TSM control. Under this TSM control, the stability of the sys-
tem and TSM are analysed and steady-state behaviour is addressed
in terms of periodic orbits.

1.2. Main contribution

The main contributions in this paper are: (1) Analyse the be-
haviour of the system completely when the system slides. All
possible periodic orbits have been analysed analytically and their
existence conditions are given which have not been reported ear-
lier. (2) The steady-state bounds for the discretized system are
obtained which are functions of sampling step between two con-
secutive time instants of discrete control law. Further, we establish
that in steady-state only period-2 orbit is exhibited by the system.

The rest of the paper is organized as follows. Section 2 briefly
reviews the continuous-time TSM control. The discretization of
continuous-time TSM is presented in Section 3. We find analyti-
cally all possible periodic orbits. The stability analysis of periodic
solutions are carried out in Section 4. The steady-state behaviour
of both second and higher order system are analysed separately.
Some concluding remarks are drawn in Section 5.

Notation. The R and R" denote the set of all real numbers and
n-dimensional linear space, respectively. The Z., denotes the set
of all nonnegative integers. For any functions f(x) and g(x), we
denote fog(x) £ f(g(x)).Similarly, f"(x) is defined as nth iteration

ntimes

—
of f(x), e, f'(x) & fofo---of(®) = f(f(---f(x)--)). For
discrete-time systems, the value of any function at kth instant
f(kh) is denoted as f (k) where h is the sampling interval. We define
Af(n) & f(n+ 1) — f(n) for any n € Z,. The notation fT
is defined as forward difference operator and is given as f* =
# = N‘H# for any given h > 0. Throughout the paper

the notation x}i)
i=1,2,...,].

corresponds to i™ periodic point of period-j where

2. Continuous-time TSM control

Consider the following second order system

X1 =X
=fx +gku
where x;, € Rfori = 1,2, and f(-) and g(-) are continuous

functions. We assume g(-) # 0 for every x € R?. The terminal
sliding surface is defined as (Venkataraman & Gulati, 1993)

(1)

s =Xy + Bx] (2)

where 8 > 0 and p is selected as the ratio of two positive odd
positive integers represented as n = q/p with 0 < q < p. Its value
is selected as n € [0.5, 1) to obtain the bounded control during
sliding. The control law to bring TSM is given as

u=—g"'(0 (F00 + B "2 + K sign(s)) (3)

where K > 0. Once the sliding surface is reached, the states of the

1-n T
system go to zero in finite time and is calculatedas t; = T+ )2117 rz() ﬂ)

where T denotes the time taken by the system to reach the sliding
surface. Consider a higher order SISO system as

{Xi:Xi+1, i:l,...,n—l

. 4
ko = F(X) + 800U *
where x = [x; X --- x,]" € R" and f(x) and g(x) are defined as
earlier. The TSM manifold for the system (4) are defined in nested
form as

Si=§i—1+,3i5,‘ni1s i=1,...,n—1. (5)
The constants §; > Oforalli = 1,...,n — 1 withs; = x;
and the exponents 7; are ratios of positive odd integers chosen
such that control u remains bounded during sliding (Yu & Man,
1996). The TSM control u is designed such that the sliding variable
sp—1 becomes zero in finite time. This further leads to s,_, and
finally so to zero subsequently. As s = x; becomes zero, the finite
time convergence of the system (4) is achieved. The control law
expression which leads the TSM is given as

dt!

where K > 0 is needed to ensure finite time convergence.

n—1 i
u=—g'(x (f @+ iﬁnﬂ-sﬁ’l’iil +K sign(sno) (6)
i=1

3. Discretization of continuous-time TSM

In this section, we consider the second order system (1). The
Euler discretization is used throughout the paper for its simplicity.
Let us consider system (1) in discrete domain

x1(k+ 1) = x1(k) + hxy(k) 7)
Xa(k+ 1) = x3(k) + hf (x(k)) + hg (x(k))u(k)

where h is the sampling time of the Euler discretization. Similarly,
the discrete equivalent of sliding surface is given as

s(k) = xa(k) + Bx] (k). (8)
A discrete equivalent control law u(k) can be derived using the
sliding surface (8) and system dynamics (7) which always brings
the trajectory of the system exactly onto the sliding surface in one
sampling instant and for all k € Z., maintains s(k + 1) = 0. The
controller which brings s(k) to zero is given as

u(k) = —(hgx(k))) ™" (x2(k) + hf (x(k))
+ B(x1 (k) + hx2(k))"). 9)
As soon as the sliding surface is reached, the discrete dynamics

is governed by the dynamics of x;(k) only. The dynamics of the
system on the terminal sliding surface can then be given as

D (x1) = x1(k + 1) = x1(k) — hBx] (k). (10)

Remark 1. The control (9) uses only the state information at some
discrete sampling instants and is different from (3). This control
law achieves sliding mode, i.e., s(k) = 0 like in continuous-time
controller. Moreover, the control (3) when implemented digitally
never achieves s(k) = 0.

Remark 2. The behaviour of the system (7) on sliding surface (8)
is now reduced to (10). So, the behaviour of system (7) depends on
(10). In other words, analysing the steady-state behaviour of (10)
can give steady-state behaviour of closed-loop system.

The steady-state solutions of the system (10) are found to be pe-
riodic orbits as reported in Galias and Yu (2012) and Janardhanan
and Bandyopadhyay (2006). Here, we find all possible periodic or-
bits of the system and show the existence of an orbit in steady-state
for any given values of h, 8 and 7. The rest of the analysis follows
to find the steady-state orbit.
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