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a b s t r a c t

Failure of structural systems under dynamic loading can be prevented via active vibration
control which shifts the damped natural frequencies of the systems away from the
dominant range of a loading spectrum. The damped natural frequencies and the dynamic
load typically show significant variations in practice. A computationally efficient metho-
dology based on quadratic partial eigenvalue assignment technique and optimization
under uncertainty has been formulated in the present work that will rigorously account
for these variations and result in economic and resilient design of structures. A novel
scheme based on hierarchical clustering and importance sampling is also developed in
this work for accurate and efficient estimation of probability of failure to guarantee the
desired resilience level of the designed system. Finally the most robust set of feedback
matrices is selected from the set of probabilistically characterized optimal closed-loop
system to implement the new methodology for design of active controlled structures.
Numerical examples are presented to illustrate the proposed methodology.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Infrastructures (e.g., high-rise buildings, bridges, wind-turbines), automotive and mechanical devices (e.g., aircrafts, hard
disk drives), etc., are subjected to various types of dynamic loads during their service life. They undergo vibration with high
amplitude (resonance phenomenon) when some of their damped natural frequencies are close to the dominant frequencies
of the dynamic loads. If the design process for such systems fails to properly account for the effects of the dynamic loads on
the response of the systems, the designed structure may collapse (e.g., failure of the Tacoma Narrows bridge, Washington in
1940 [1,2]) or lose functionality (e.g., wobbling of the Millennium bridge, London in 2000 [3,4]). The catastrophic con-
sequences can be prevented through deployment of appropriate vibration control strategies, among which the most popular
are the active vibration control (AVC) and the passive vibration control (PVC). The AVC is, however, advantageous over the
PVC due to its ability to reduce the vibration level of a structure by modifying only those damped natural frequencies of the
structure that lie within the dominant spectrum of the loads. A schematic of the AVC technique and various components of
an AVC system employed on a high-rise building are depicted in Fig. 1.
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To understand the working principle of AVC technique, let us consider the governing equation representing the dynamics
of structures given by

M €qðtÞþC _qðtÞþKqðtÞ ¼ fðtÞ ð1Þ

Eq. (1) is obtained via the finite element (FE) discretization of the governing partial differential equations (PDEs) approx-
imating the dynamic response of the physical structural system. In Eq. (1), M;C;K denote the mass, damping, and stiffness
matrices of the system, respectively. Also, qðtÞ denotes the displacement response of the system, fðtÞ denotes the dynamic
load acting on the system and the dot ð_Þ denotes time derivative. Note that M;C;KAMþ

n Rð Þ, the set of all real symmetric
positive-definite matrices of size n� n where n is the degrees of freedom (dof) associated with the FE model of the system.
Since M;C;K are generated by FE technique, they are very large and often inherit nice structural properties, such as defi-
niteness, bandness, and sparsity, which are useful for large-scale computing. The system is, in general, denoted by ðM;C;KÞ
and is known as open-loop system. The dynamics of ðM;C;KÞ depend on their damped natural frequencies ωdn and mode-
shapes xdn. The pair ðωdn; xdnÞ of the system can be found by solving quadratic eigenvalue problem (QEP) associated with the

quadratic pencil PoðλÞ ¼ Mλ2þCλþK
� �

, where λ denotes the eigenvalue of the QEP given by PoðλÞx¼ 0. Here x denotes the

right eigenvector of the QEP and is associated with the eigenvalue λ. Note that λ's occur in complex conjugate pairs and
ωdn ¼ ImðλÞ.

The mathematical basis of AVC is an inverse eigenvalue problem for the pencil PoðλÞ, known as the quadratic partial
eigenvalue assignment (QPEVA) problem. Suppose that a control force of the form BuðtÞ is applied to the structure for
vibration control, where BAMn�m Rð Þwithmrn is a fixed control matrix and the control input vector uðtÞ assumes the form
uðtÞ ¼ FT _qðtÞþGTqðtÞ. The matrices F;GAMn�m Rð Þ are feedback gain matrices. Under the application of control force, Eq. (1)
then gets modified to

M €q tð Þþ C�BFT
� �

_q tð Þþ K�BGT
� �

q tð Þ ¼ fðtÞ ð2Þ

The modified system is called a closed-loop system and is denoted by M; C�BFT
� �

; K�BGT
� �� �

. The dynamics of this

system are then governed by the eigenvalues and eigenvectors of the closed-loop pencil PcðλÞ ¼
Mλ2þ C�BFT

� �
λþ K�BGT
� �� �

.

Let the set of eigenvalues of the ðM;C;KÞ be denoted as λi2ni ¼ 1 with λi
2p
i ¼ 1 (with 2p⪡2n) representing the set of problematic

eigenvalues which needs to be replaced by μi
2p
i ¼ 1. Let x ið Þ

i ¼ 12p be the right eigenvectors of the ðM;C;KÞ associated with the
eigenvalues λi

2p
i ¼ 1. Then QPEVA problem is to find feedback matrices F and G such that the spectrum of PcðλÞ is fμi

2p
i ¼ 1; λi

2n
i ¼ 2pþ1g

and the eigenvectors x ið Þ
i ¼ 2pþ12n corresponding to λi2ni ¼ 2pþ1 remain unchanged. This desired feature is known as no-spillover

property. In this context, note that, the QPEVA technique is computationally different from the traditional pole/eigenvalue
assignment technique for which there exist excellent numerically viable methods [5, Sections 11.2–11.3].

In the past, a handful number of algorithms based on the state-space approach have been developed to implement
QPEVA technique for AVC [6–11]. Also, in the last two decades, considerable research efforts have been channelized towards
implementation of state-space approach based AVC techniques for buildings [12–17], wind turbines [18–23], hard disk
drives [24–26], etc. These state-space approach based AVC techniques, however, turn out to be numerically inefficient for
large-scale systems as the matrices associated with the linear model are twice the dimension of M;C;K and they lose the
inherent computationally exploitable properties stated earlier. In this regard, the mathematical and engineering challenges
are to solve the QPEVA problem in the quadratic setting itself and using only a small number of eigenvalues and eigen-
vectors that are all that can be computed using the state-of-the-art computational techniques (e.g., Jacobi–Davidson
methods [27,28]) or can be measured in a vibration laboratory [29–31]. Furthermore, the no-spillover property must be
established by means of mathematical results, because it is not possible to do so computationally or by measurements.
Meeting these challenges, several computationally effective algorithms have been developed in the recent years for large-
scale systems [32–34]. Furthermore, work has been done to compute the feedback matrices such that they have minimum
norm (MNQPEVA technique) and the robustness of the closed-loop system under small perturbations of the data is ensured
(RQPEVA technique). These algorithms are very well suited in a deterministic setting.

Fig. 1. Schematic of (a) AVC technique and (b) various components of an AVC system.

S. Das et al. / Mechanical Systems and Signal Processing 72-73 (2016) 359–375360



Download English Version:

https://daneshyari.com/en/article/6955396

Download Persian Version:

https://daneshyari.com/article/6955396

Daneshyari.com

https://daneshyari.com/en/article/6955396
https://daneshyari.com/article/6955396
https://daneshyari.com

