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A theoretical framework is established for the control of higher-order nonholonomic systems, defined as
systems that satisfy higher-order nonintegrable constraints. A model for such systems is developed in
terms of differential-algebraic equations defined on a higher-order tangent bundle. A number of control-
theoretic properties such as nonintegrability, controllability, and stabilizability are presented. Higher-
order nonholonomic systems are shown to be strongly accessible and, under certain conditions, small
time locally controllable at any equilibrium. The applicability of the theoretical development is illustrated
through a third-order nonholonomic system example: a planar PPR robot manipulator subject to a jerk
constraint. In particular, it is shown that although the system is not asymptotically stabilizable to a given
equilibrium configuration using a time-invariant continuous feedback, it is strongly accessible and small-
time locally controllable at any equilibrium.
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1. Introduction

The problem of controlling dynamical systems that satisfy
nonintegrable relations has attracted considerable attention in the
recent past. These studies were primarily limited to systems sat-
isfying nonintegrable kinematic relations, also known as systems
with first-order (classical) nonholonomic constraints. Examples of
systems with nonintegrable first-order constraints include sys-
tems subject to rolling constraints as well as mechanical systems
that involve symmetries, which result in nonintegrable conserved
quantities such as angular momentum. Several examples of sys-
tems with first-order nonholonomic constraints have been studied
in the context of mobile robots (Samson, 1995; Walsh & Bushnell,
1995; Walsh, Tilbury, Sastry, Murray, & Laumond, 1994) and space
robotics (Dubowsky & Papadopoulos, 1993; Nakamura & Mukher-
jee, 1991). A few representative control works include the study of
controllability and stabilizability (Bloch, Reyhanoglu, & McClam-
roch, 1992), motion planning (Murray & Sastry, 1993; Nakamura &
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Mukherjee, 1991), and feedback stabilization and tracking (Aneke,
2003; Aneke, Nijmeijer, & de Jager, 2003; Astolfi, 1996; Godhavn &
Egeland, 1997; Jiang & Nijmeijer, 1997, 1999; Samson, 1995; Sor-
dalen & Egeland, 1995; Walsh & Bushnell, 1995; Walsh et al., 1994).

In Reyhanoglu, van der Schaft, McClamroch, and Kolmanovsky
(1999), the ideas in Bloch et al. (1992) have been extended to dy-
namical systems that satisfy nonintegrable acceleration relations,
i.e., systems with second-order constraints. It has been shown that
such systems can arise as models of underactuated mechanical sys-
tems, defined as systems with fewer inputs than degrees of free-
dom (Spong, 1996). Examples of such systems include underactu-
ated vehicles (Aneke et al., 2003; Pettersen & Egeland, 1999; Re-
poulias & Papadopoulos, 2007) and underactuated manipulators
(Aneke, 2003; Baillieul, 1993; Spong, 1995).

Since the beginning of the last century, there has been con-
siderable work on the dynamics formulation of systems with
higher-order nonholonomic constraints (Jarzebowska, 2002, 2005,
2006; Ze-chun & Feng-xiang, 1987). Higher-order constraints are
defined as program constraints (Jarzebowska, 2002) that arise by
imposition of certain design conditions on the allowable motions.
As shown in Jarzebowska (2002), the Grioli condition for a rigid
body to perform a pseudo-regular precession can be expressed as
a second-order nonholonomic program constraint. Program con-
straints may arise from driving and task requirements in motion
planning problems for robotic systems. For example, curvature and
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torsion constraints imposed on robot trajectories can be formu-
lated as second-order and third-order nonholonomic program con-
straints.

Recently, there has been considerable interest in control of me-
chanical systems with task and performance conditions involving
higher-order time derivatives of the configuration variables (Free-
man, 2012; Macfarlane & Croft, 2003; Mellinger & Kumar, 2011).
In Macfarlane and Croft (2003), constraints on the permissible jerk
are introduced to mitigate the adverse effects of excessive jerk in
industrial robot applications. Variety of optimization methods are
proposed for generating either minimum-jerk trajectories (Free-
man, 2012) or minimum-snap trajectories (Mellinger & Kumar,
2011). These methods are mostly based on parameterization of cer-
tain configuration variables via cubic, quartic, or quintic polynomi-
als of time. The motivation of this paper is to develop a theoretical
framework for the control of such systems by exploiting the ge-
ometric structure as was done in our earlier work in Bloch et al.
(1992) and Reyhanoglu et al. (1999). To the best of our knowledge,
little has been done in generalizing the control and stabilization
ideas developed in Bloch et al. (1992) and Reyhanoglu et al. (1999)
to systems with higher-order nonholonomic constraints, except for
the work in Jarzebowska (2005, 2006) for the tracking control of
such systems.

In this paper, a theoretical framework is presented for the con-
trol of higher-order nonholonomic systems defined on a higher-
order tangent bundle. A number of control-theoretic properties
such as nonintegrability, controllability, and stabilizability are
presented. Higher-order nonholonomic systems are shown to be
strongly accessible and, under certain conditions, small time lo-
cally controllable at any equilibrium. These results are obtained
by applying the powerful set of control-theoretic concepts and dif-
ferential geometric tools developed in the nonlinear control liter-
ature (Brockett, 1983; Nijmeijer & van der Schaft, 1990; Sontag
et al., 1990; Sussmann, 1979, 1987; Sussmann & Jurdjevic, 1972;
Zabczyk, 1989). The novelty of this paper lies in the theoretical re-
sults obtained for the class of systems studied in this paper. The
applicability of the theoretical framework is illustrated through
a physical example. A preliminary version of this paper was pre-
sented as a conference paper (Rubio Hervas & Reyhanoglu, 2013).

2. Mathematical model

Consider a system defined on a smooth (C*) configuration
manifold Q of dimension n with local coordinatesq = (q', ..., q").
We introduce higher-order tangent bundles in order to deal with
higher-order constraints.

For the configuration manifold Q, the usual tangent bundle is
given by Burke (1985) and Crampin and Pirani (1986)

Q= J1Q

q€Q
i.e., the union of the tangent spaces to Q. The coordinates q on the
configuration manifold Q generates the natural coordinates (q, q)
for TQ,

The higher-order tangent bundle of the manifold Q is the fun-
damental structure of higher-order mechanics. Some basic con-
cepts and notations related to higher-order tangent bundles are
now summarized following the development in Gracia, Pons, and
Roman-Roy (1991). The pth order tangent bundle T’PQ, p > 1,
is defined as an n(p + 1)-dimensional manifold, whose points
are p-velocities. The natural coordinates for TPQ are given by
(q,q,...,qP). Foreach I, 0 < | < p, one can define a
projection map n{’ TPQ — T'Q given (in coordinates) by
7. q,....q7) = (q,4,...,q"). The projection map satisfies
mpon! = 7,0 < I < | < p.Here T°Q and ¢ are inter-
preted as Q and q, respectively. In short, TPQ is fibered over Q as

well as T'Q for all 0 < | < p. Note that there is a natural closed
embedding j* : TP*1Q — T(TPQ) defined asj?(q, g, ..., q?™) =
(qv q’ ] q(p)a qv R} q(p+]))'

Systems with first-order (classical) nonholonomic constraints
(Bloch et al., 1992) and second-order nonholonomic constraints
(Reyhanoglu et al., 1999) naturally appear in several physical
examples. In this paper, we extend the developments in Bloch
et al. (1992) and Reyhanoglu et al. (1999) to systems with higher-
order nonholonomic constraints that are affine in the highest-order
derivatives, i.e., constraints of the form

A@.q, ... q" " +5(q.q.....q""V)=0, p=1, (1)
where A € R”*"andS € R", 1 < r < n, are smooth (C*®)
functions defined on appropriate subsets of T"~1Q.

Assume that there exists a non-constant smooth function

h():Rx TP 'Q—> R

such that % = 0 along the solutions of dynamic equations, then h
is called a non-trivial first integral.

Definition 1. The constraints (1) are said to be (completely) pth
order nonholonomic if there does not exist any non-trivial first
integral.

Remark 1. The sth order jet prolongation of R x Q is denoted
by Z°(R x Q). If (¢, q) are fibered coordinates on R x Q, then
(t,q,q,...,q")are fibered coordinates on g°(R x Q). Clearly, one
canidentify °(R x Q) with R x T°Q. Thus h(t, q, ¢, ..., q?~ V) can
also be viewed as a scalar function defined on the (p-1)th order jet
prolongation.

Assume that the r x n matrix A in Eq. (1) has full rank. Then
there is no loss of generality in assuming that the generalized
coordinates are ordered so that the last r columns of the matrix
A constitute an r x r locally invertible matrix function, i.e., A can
be expressed as [A; A,], where Ajisanr xm, m = n —r,
matrix function and A; is an r x r locally nonsingular matrix
function. Let ¢ = (q1,q2), g1 € R™, g2 € R’ be a partition of
generalized coordinates corresponding to the partitioning of the
matrix function A. Eq. (1) can now be rewritten as

©” =J@.4q,....¢" @ P +R@. G, ..., q"7V), (2)
where ] = —A;'A; € R™™and R = —A,'S € R are assumed to
be smooth functions defined on appropriate subsets of T?~'Q,

Second-order relations of the above form appear naturally
in systems under the action of m < n independent control
forces and/or torques; i.e., systems with fewer control inputs than
degrees of freedom (see e.g. Reyhanoglu et al., 1999 and references
therein). For such systems q; and g, represent the actuated
and unactuated degrees of freedom, respectively. Examples of
systems with second-order constraints include underactuated
vehicles (Aneke et al., 2003; Pettersen & Egeland, 1999; Repoulias
& Papadopoulos, 2007) and underactuated manipulators (Aneke,
2003; Baillieul, 1993; Spong, 1995).

3. Controllability and stabilizability results

In this section, we study controllability and stabilizability prop-
erties of higher-order nonholonomic systems. A powerful set of
tools for the analysis of the properties of such systems is based
on concepts derived from differential geometry. The reader is re-
ferred to Brockett (1983); Nijmeijer and van der Schaft (1990);
Sontag et al. (1990); Sussmann (1979, 1987); Sussmann and Jurdje-
vic (1972); Zabczyk (1989) for the controllability and stabilizability
concepts developed in the nonlinear control literature.

Let(q, q, ..., qPV) for g € R" denote local coordinates on the
(p — 1th order tangent bundle M = TP~'Q, where p refers to
the order of the nonholonomic constraint. Generalizing the ideas
introduced in Reyhanoglu et al. (1999), we define the r-covector
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