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a b s t r a c t

Trajectory tracking of uncertain time-delay linear systems by output feedback control is of theoretical
importance and practical value. In this paper, concentrating on a class of linear plants whose
relative degree equals to system dimension, we develop a Lyapunov-based control scheme to achieve
trajectory tracking despite some classic difficulties including unmeasurable system state, unknown plant
parameters and unknown input time-delay. A comprehensive approach combining adaptive backstepping
output feedback with prediction-based boundary control is employed in the design. The stability analysis
exhibits the global boundedness of all closed-loop system signals and the tracking performance is also
guaranteed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Actuator time-delay exists widely in practice such as process
control of chemical engineering, industrial oil-drilling plants,
temperature control of air-conditioning and so on. Some of
them may arise in an actual physical transport delay, while
others may demonstrate themselves as computational delays. As
a consequence, an increasing number of research have focused
on the control of unstable plants with a long actuator delay
over past four decades. Based on the notation of a predictor
feedback (Artstein, 1982; Evesque, Annaswamy, Niculescu, &
Dowling, 2003; Gu & Niculescu, 2003; Kwon & Pearson, 1980;
Manitius & Olbrot, 1979; Michiels & Niculescu, 2003; Mirkin,
2004; Mondie & Michiels, 2003; Niculescu & Annaswamy, 2003;
Richard, 2003; Watanabe & Ito, 1981; Zhong, 2006), the input
delay obtained a perfect compensation and the systems achieved
the stabilization. Nevertheless, most of these results required

✩ This work received support from China Scholarship Council (CSC) and National
Natural Science Foundation of China (NSFC: 61134007, 61320106009, 61304012).
The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Hiroshi Ito under
the direction of Editor Andrew R. Teel.

E-mail addresses: zhuyang@iipc.zju.edu.cn, zhy024@ucsd.edu (Y. Zhu),
hysu@iipc.zju.edu.cn (H. Su), krstic@ucsd.edu (M. Krstic).
1 Tel.: +86 571 87951075; fax: +86 571 87952279.

that the delay value was known. Adaptive control of time-
delay systems successfully dealt with uncertain parameters in
the system (Evesque et al., 2003; Niculescu & Annaswamy,
2003; Ortega & Lozano, 1998), however, they also called for a
known delay value for design. Zhou, Wen, and Wang (2009)
studied the robustness of adaptive backstepping control for linear
systems to dynamic perturbations including input delay, but the
proposed feedback scheme did not aim at compensating for the
delay effect. The significance of control problems with unknown
delay was emphasized in Diop, Kolmanovsky, Moraal, and Van
Nieuwstadt (2001) and Krstic and Banaszuk (2006), in which an
approximation design was applied to a limited class of plants.

Later on, a new kind of prediction-based boundary control
(Krstic & Smyshlyaev, 2008), has been developed to address the de-
lay uncertainty, in which the original system is considered as the
Ordinary Differential Equation (ODE) part, while the actuator delay
is regarded as a transport Partial Differential Equation (PDE) part
and the ODE–PDE cascade system has been studied as a whole. As
stated in Chapter 7.1 of Krstic (2009), there exist a total number of
14 distinct problem combinations due to unknown input delay, un-
known plant parameters, unmeasured ODE state and unmeasured
PDE state. A few of these problems like a composition of unknown
delay and parameters, a composition of unmeasurable ODE and
PDE states has been addressed very well in Bresch-Pietri, Chauvin,
and Petit (2012), Bresch-Pietri and Krstic (2009) and Bresch-Pietri
and Krstic (2010).
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In this paper, we propose a control scheme to achieve trajectory
tracking despite unmeasurable ODE state, unknown system pa-
rameters and unknown input time-delay, which is one of 14 prob-
lems and has never been considered yet. The systems thatwe focus
on are a class of linear plants whose relative degree is equal to sys-
tem dimension. Themethod that we perform here is a comprehen-
sive approach combining adaptive backstepping output feedback
control in Krstic, Kanellakopoulos, and Kokotovic (1995) and Zhou
et al. (2009) with prediction-based boundary control in Bresch-
Pietri and Krstic (2009) and Krstic (2009). It seems appropriate
to say this is not a trivial composition of existing results while,
as shown in later derivation, a few of relatively new technical is-
sues grow up in dealing with this problem. First of all, by mod-
eling the system as an observer canonical form, the somewhat
restrictive assumptions such that a completely controllable pair
(A(θ), B(θ)) in Bresch-Pietri et al. (2012), Bresch-Pietri, Chauvin,
and Petit (2014) and Bresch-Pietri and Krstic (2009) have been re-
moved. In addition, a class of Kreisselmeier-filters (K-filters) are
brought into virtually estimate unmeasurable ODE state which
makes controller design much more sophisticated than Bresch-
Pietri and Krstic (2009). More importantly, to achieve a linear con-
troller to apply the prediction control, we do not employ tuning
functions or nonlinear damping terms like Krstic et al. (1995) and
Zhou et al. (2009) to address parameter estimation error on the
backstepping Lyapunov-based design. Instead, we appeal to adap-
tation gains (both for parameter and delay) and normalization of
update laws to make ODE–PDE cascade system stable. In terms of
trajectory tracking, the reference output filter and reference input
filter are introduced to help get a backstepping transformation for
boundary control. In fact, there is no result about Lyapunov-based
adaptive backstepping control without overparametrization, tun-
ing functions and nonlinear damping. We have to acknowledge
that we do not manage to extend our design to a more general
case—when the relative degree is less than the system dimension.
In that situation, the remaining zero dynamics of the plant should
be incorporated in the design to globally stabilize the closed-loop
system, however, this is impossible because of unmeasurable ODE
state and unknown parameters.

The rest of the paper is organized as follows. In Section 2,
we present the plant model and formulate the control problem
and objectives. In Section 3, the Kreisselmeier-filters are used to
estimate the unmeasured ODE state. The controller and identifier
are presented in Sections 4 and 5, respectively. The stability for the
whole closed-loop system and the trajectory tracking are analyzed
in Section 6. An numerical example is illustrated in Section 7
followed by the conclusion of the paper in Section 8.

2. System description and problem formulation

We consider a class of linear single-input single-output systems
which can be represented as the following observer canonical
form:

Ẋ(t) = AX(t) − aY (t) + bU(t − D)

Y (t) = X1(t) (1)

where

A =

0
... In−1
0 · · · 0

 , a =


an−1

...
a1
a0

 , b =


0
...
0
b0

 (2)

and X(t) = [X1(t), X2(t), . . . , Xn(t)]T ∈ Rn is the unmeasured
state vector, Y (t) ∈ R is the measurable output, U(t − D) ∈

R is the input with an unknown constant time-delay D, while
an−1, . . . , a1, a0 and b0 are unknown constant plant parameters
and control coefficient, respectively.

Remark 1. Comparing (1) with Eq. (10.3) in Chapter 10 of Krstic
et al. (1995), one has no trouble finding that (1) is a special case
of (10.3) with bm = bm−1 = · · · = b1 = 0, which means the
relative degree is identical to the system dimension. We have to
admit that this kind of system is restrictive to some extent, but
to the best of our knowledge, there are still many linear delayed
plants in practice satisfying this kind of structure, please refer to
examples and simulations in Bresch-Pietri et al. (2012) and Bresch-
Pietri et al. (2014).When the relative degree is less than the system
dimension, to achieve the stabilization of the closed-loop system,
one can see that the remaining m-dimensional zero dynamics ζ
just for analysis in (10.133) of Krstic et al. (1995) should be included
in the design of the normalized update law (75) of this paper.
However, this is obviously impossible since ζ is unmeasured and
bm, bm−1, . . . , b0 are unknown.

For convenience of description, we rewrite plant (1) compactly
as

Ẋ(t) = AX(t) + F

U(t − D), Y (t)

T
θ

Y (t) = eT1X(t) (3)

where p = 1 + n dimensional parameter vector θ is defined
by θ = [b0, an−1, . . . , a1, a0]T and ei for i = 1, 2, . . . is the ith
coordinate vector in corresponding space,

F

U(t − D), Y (t)

T
=


0(n−1)×1

1


U(t − D), −InY (t)


. (4)

Our control objectives are listed as follows:

• Design a control scheme to compensate for the system uncer-
tainty and actuator time-delay to ensure that all the signals of
the closed-loop system are globally bounded.

• Make output Y (t) asymptotically track a reference signal Yr(t).

To achieve the above control objectives, we have the following
assumptions.

Assumption 1. In the case of known θ , given a time-varying refer-
ence output trajectory Yr(t)which is known, bounded and smooth,
there exist known reference state signal X r(t, θ) and reference in-
put signal U r(t, θ) which are bounded in t , continuously differen-
tiable in the argument θ and satisfy

Ẋ r(t, θ) = AX r(t, θ) + F

U r(t, θ), Yr(t)

T
θ

Yr(t) = eT1X
r(t, θ). (5)

Remark 2. Assumption 1 is amild variation of traditional Assump-
tion 10.4 on p. 418 of Krstic et al. (1995). Suppose Yr(t) and its
first n derivatives are known, bounded and piecewise continu-
ous. If we choose reference states as X r

1(t) = Yr(t), X r
2(t, θ) =

Ẏr(t) + an−1Yr(t), . . . , X r
n(t, θ) = Y (n−1)

r (t) + an−1Y
(n−2)
r (t) +

an−2Y
(n−3)
r (t) + · · · + a2Ẏr(t) + a1Yr(t), it is easy to find a known,

bounded U r(t, θ) to make the equality Y (n)
r (t) + an−1Y

(n−1)
r (t) +

an−2Y
(n−2)
r (t)+· · ·+ a1Ẏr(t)+ a0Yr(t) = b0U r(t, θ) hold, thus (5)

is checked.

Assumption 2. There exist two known finite constants D > 0 and
D̄ > 0, such thatD ∈ [D, D̄]. The sign of the high-frequency gain b0,
i.e. sgn(b0), is knownand there exist two known finite constants b0,
b̄0 such that 0 < b0 ≤ |b0| ≤ b̄0. In addition, there exists a convex
compact set A ⊂ Rn such that ∃ā, a∗, |a − a∗

| ≤ ā for all a ∈ A,
where a∗

∈ Rn is a known constant vector, ā > 0 is a known finite
constant.
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