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a b s t r a c t

This paper deals with the problem of finite-time stabilization for a class of high-order stochastic nonlinear
systems in strict-feedback form. By using Itô’s formula, mathematical induction and backstepping design
method, a novel state-feedback controller is constructed to guarantee that the closed-loop high-order
nonlinear system has a unique solution and the solution of the closed-loop high-order nonlinear system
is finite-time stable. A systematic design algorithm is developed for the construction of the backstepping
controller. Finally, the effectiveness of the state-feedback controller is illustrated by two examples.
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1. Introduction

It is known that the theory of stochastic differential equations
has been an important tool in engineering system modeling,
analysis and design. Stochastic stability plays an essential role in
the theory of stochastic differential equations. A large number of
results have been focused on the stability analysis of stochastic
differential equations in the literature; see, e.g., Khasminski (1980),
Mao (1997) and the references therein.

Recently, a class of stochastic nonlinear systems in strict-
feedback form has been paid much attention since many physical
devices such as the cart-pendulum system (Mazenc & Bowong,
2003) and the ball–beamwith a friction term (Sepulchre, Janković,
& Kokotović, 1997) can be described by such a system with strict-
feedback structure. By employing the quartic Lyapunov function,
Deng and Krstić (1997) firstly discussed the problem of globally
asymptotic stabilization for a class of stochastic nonlinear systems
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in strict-feedback form. Since then, many results on this kind of
stochastic nonlinear systems have appeared in the literature; for
instance, see, Bresch-Pietri andKrstić (2010), Isidori (1999), Liu and
Xie (2013), Marconi and Isidori (2000) and the references therein.

It is obvious that the traditional stability criteria such as stability
in probability, moment stability and almost surely stability only
can describe the asymptotic behavior of the trajectories of a
stochastic system as time goes to infinity. However, these stability
criteria fail when we want to know the behavior of the solution
of a stochastic system in finite time. As a consequence, finite-time
stability for stochastic systems has become popular in recent years
(Chen & Jiao, 2010; Yang, Li, & Chen, 2009; Yin, Khoo, Man, & Yu,
2011). By using the state partition of continuous parts of systems,
Yang et al. (2009) designed a feedback controller to ensure that
a nonlinear stochastic hybrid system is finite-time stochastically
stable. Yin et al. (2011) introduced a new definition of finite-
time stability for stochastic nonlinear systems and presented a
stochastic finite-time stability theorem.

Motivated by the above works, Khoo, Yin, Man, and Yu
(2013) studied finite-time stabilization of the following first-order
stochastic nonlinear system in strict-feedback form:

dx1 = x2dt + gT
1 (x1)dw,

dx2 = x3dt + gT
2 (x̄2)dw,

...

dxn = (f (x̄n) + u)dt + gT
n (x̄n)dw,
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where (Ω, F , P) is a probability space and Ft is a filtration of sub-
σ -fields of F , x̄n := (x1, . . . , xn)T = {x̄n(t), Ft; 0 ≤ t < ∞} is a
continuous, adapted Rn-valued measurable process, w = {wt , Ft;

0 ≤ t < ∞} is a d-dimensional Brownian motion. Let x̄i = (x1,
. . . , xi)T , the functions f : Rn

→ R and gi(x̄i) : Ri
→ Rd, i =

1, . . . , n, also called the coefficients of the equation, are assumed to
beBorelmeasurable, continuous, and satisfy f (0) = 0, g(0) = 0 for
all t ≥ 0, u ∈ R represents the control input of the system. By using
the backstepping designmethod, Khoo et al. (2013) obtained some
sufficient conditions to ensure the finite-time stability of the above
first-order stochastic nonlinear system in strict-feedback form.
However, finite-time stability of a high-order stochastic nonlinear
system in strict-feedback form was not considered in Khoo et al.
(2013). Naturally, an important and unsolved problem arose: Can
the backstepping design method on the finite-time stability analysis
of stochastic nonlinear systems in strict-feedback form be extended to
high-order case?

In this paper, we will investigate this problem. Different from
the first-order stochastic nonlinear system discussed in Khoo et al.
(2013), we are concerned with the following high-order stochastic
nonlinear system in strict-feedback form:

dx1 = (xp12 + f1(x1, u, t))dt + gT
1 (x1)dw,

dx2 = (xp23 + f2(x̄2, u, t))dt + gT
2 (x̄2)dw,

...

dxn = (fn(x̄n, u, t) + u)dt + gT
n (x̄n)dw, (1)

where pi, i = 1, . . . , n − 1, are given odd positive integers, u ∈ R
is the input of the system, and fi : Rn

× R × R → R, i = 1, . . . , n,
are continuous uncertain functions such that fi(0, 0, t) = 0, ∀t .

By constructing a novel Lyapunov function and using Itô’s for-
mula, mathematical induction and backstepping design method,
a new state-feedback controller is constructed to ensure that the
closed-loop high-order nonlinear system has a unique solution
and the solution of the closed-loop high-order nonlinear system is
finite-time stable. A systematic design algorithm is developed for
the construction of the backstepping controller. Finally, two exam-
ples are given to show the effectiveness of the theoretical results.

The rest of this paper is organized as follows. In Section 2, we
present some preliminary results. In Section 3, we develop a novel
systematic design algorithm and the backstepping design method
to achieve finite-time stability of high-order stochastic nonlinear
system in strict-feedback form. In Section 4, we use two examples
to illustrate the effectiveness of the theoretical results. Finally, in
Section 5, we conclude the paper with some general remarks.

2. Preliminaries

In this section, we will introduce some notations and prelim-
inaries. Throughout this paper, unless otherwise specified, R de-
notes the set of real numbers, R+ denotes the set of positive real
numbers, Rn denotes the real n-dimensional space, C2 denotes the
continuous functions with continuous derivatives up to second-
order, AT denotes its transpose when A is a given vector or matrix,
tr{A} denotes its trace when A is a square matrix, and |A| is the Eu-
clidean norm of a vector A.

Consider the following n-dimensional stochastic nonlinear
system:

dx = f (x)dt + gT (x)dw,

x0 = ξ, (2)

where f (x) and g(x) are continuous in x and satisfy f (0) = 0,
g(0) = 0 for all t ≥ 0.

Definition 1 (Yin et al., 2011). The trivial solution of (2) is said to
be finite-time stable in probability, if the solution exists for any
initial data x0 ∈ Rn, which is denoted by x(t, x0), and the following
statements hold:

(i) Finite-time attractiveness in probability: for every initial value
x0 ∈ Rn

\ {0}, the first hitting time τx0 = inf{t | x(t, x0) = 0},
which is called the stochastic settling time, is finite almost
surely, that is, P{τx0 < ∞} = 1;

(ii) Stability in probability: For every pair of ϵ ∈ (0, 1) and r > 0,
there exists a δ = δ(ϵ, r) > 0 such that P{|x(t; x0)| < r,
for all t ≥ 0} ≥ 1 − ϵ, whenever |x0| < δ;

(iii) The solution x(t + τx0; x0) is unique for t ≥ 0.

Definition 2. A function µ : R+ → R+ is said to be a class K
function if it is continuous, strictly increasing and µ(0) = 0. A
class K function µ is said to belong to class K∞ if µ(r) → ∞

as r → ∞.

For a C2 Lyapunov function V , let LV denote the differential
operator of V with respect to (2) defined by

LV (x) =
∂V (x)
∂xT

f (x) +
1
2
tr

gT (x)

∂2V (x)
∂xT∂x

g(x)


. (3)

Lemma 1 (Khalil, 2002). Let V : Rn
→ R be a continuous positive

definite function. Then, there exist two class K functions µ1 and µ2
defined on [0, +∞) such that

µ1(|x|) ≤ V (x) ≤ µ2(|x|),

for all x ∈ Rn. Moreover, if V (x) is radially unbounded, then both µ1
and µ2 can be chosen to class K∞.

Lemma 2 (Yin et al., 2011 and Khoo et al., 2013). For system (2), if
there exists a Lyapunov function V : Rn

→ R+, K∞ class functions
µ1 and µ2, positive real numbers c > 0 and 0 < γ < 1, such that
for all x ∈ Rn and t ≥ 0,

µ1(|x|) ≤ V (x) ≤ µ2(|x|), (4)

LV (x) ≤ −c · (V (x))γ , (5)

then the trivial solution of (2) is finite-time attractive and stable in
probability.

Lemma 3 (Khoo et al., 2013 and Skorokhod, 1965). Suppose that f (x)
and g(x) are continuous with respect to their variables and satisfy the
linear growth condition:

(f (x))2 + (g(x))2 ≤ K(1 + x2), (6)

for K > 0. Then for any given x(t0) independent of w(t),
system (2) has a continuous solution with probability 1.

Lemma 4 (Huang, Lin, & Yang, 2005, Li, Jing, & Zhang, 2011 and Lin
& Qian, 2002). Let x ∈ R, y ∈ R, z ∈ Rr , and p ≥ 1 be a constant.
Given any positive real numbers c, d and any real-valued functions
ζ (x, y) > 0, µ(x, y, z) ≥ 0, the following holds:x 1

p − y
1
p

 ≤ 2
p−1
p |x − y|

1
p ,

|x ± y|p ≤ 2p−1
|xp ± yp|,

(|x| + |y|)
1
p ≤ |x|

1
p + |y|

1
p ≤ 2

p−1
p (|x| + |y|)

1
p ,

µ(x, y, z)|x|c |y|d ≤
c

c + d
ζ (x, y)|x|c+d

+
d

c + d
(µ(x, y, z))

c+d
d (ζ (x, y))−

c
d |y|c+d.
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