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a b s t r a c t

Natural frequencies, mode shapes and modal damping values are the most important
parameters to describe the noise and vibration behavior of a mechanical system. For
rotating machinery, however, the directivity of the propagation wave and the wave length
of each mode should also be taken into account. Generally, the information on directivity
and wave length is obtained on the basis of the mode shape result, which is estimated
from several measurements measured at different locations. In this research, the accurate
directivity and wave length results will be observed by calculating the phase difference at
two different locations. The limitation of the proposed method, which arises from the
difference between the assumed ring model and the real tire, will be explained, and a
method to address the limitation is introduced. The proposed method is verified by
applying it to experimental measurements, and a brief explanation of the obtained results
is provided.

& 2015 Published by Elsevier Ltd.

1. Introduction

As the number of vehicles has increased significantly over the past few decades, urban inhabitants have been exposed to
uncomfortable noise, which arises mainly due to the movement of vehicles while driving [1]. In particular, the noise and
vibration that are transmitted by the interaction of the tires of a vehicle and the road surface are the main causes of the
harshness of the noise to urban inhabitants [2]. Therefore, to reduce the noise and vibration during driving, research on the
dynamic characteristics of a tire as well as of the vehicle itself has been actively pursued in recent years [3–5]. Typically,
modal analysis is used to determine the dynamic characteristics of a tire. For the stationary case, modal analysis can be
performed based on the frequency response function, which is obtained by the measured forces and responses [6]; however,
for the rolling case, operational modal analysis should be adopted, which uses only responses because of the restriction of
the experimental setup to measure the applied forces [3]. The rolling tire experiences bifurcation phenomena due to the
Coriolis Effect, in which the natural frequency of the each mode is separated into two distinct frequencies [7,8]; to identify
this phenomenon through experimentation, the directivity of the propagating wave must be determined through the mode
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shapes. Therefore, responses at multiple locations are required to study the dynamic properties of a rotating tire; however,
this requirement can result in high expenditure, and difficulties can arise in the development of the experimental
configuration. In this study, a technique is proposed that uses a lower amount of measurement data to reduce the difficulty
of the experimental configuration; this technique is used to estimate the modal parameters, which enables the prediction, in
particular, of the wave length and the directivity of the each mode from the phase differences of the measurements.

This paper is organized as follows. In Section 2, the theoretical background of the proposed technique is introduced, and
in Section 3, the experimental configuration and results are studied to verify the proposed technique. Finally, conclusions
are summarized in Section 4. More specifically, in Section 2.1, the ring model that is used in this study is introduced and the
assumptions for this model are included. In Section 2.2 the detailed description for the proposed technique is introduced by
explaining the analytic model. In addition, the difference between a real rolling tire and the introduced model is discussed,
and the possibility of the proposed technique to overcome the difference is described.

2. Theory

2.1. Ring model

In previous studies, a rotating flexible ring was used to analyze a rotating tire [7,9,10]; here, a flexible ring represents the
in-plane vibration of the belt and tread layer of a rotating tire, and two stiffness values in the radial and circumferential
directions, which are connected on an elastic foundation, represent the tire sidewall. The vibrational properties in the
torsional direction are difficult to estimate using a flexible ring model; however, because these vibrations generally occur
above 300 Hz, a flexible ring model is sufficient to analyze the vibrational properties of the tire below this frequency region
[3]. The equations of motion for a flexible rotating ring in cylindrical coordinate are [7]
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Eq. (1) is based on four assumptions [3,7]. First, transverse shear deflections (εθr) are neglected. Second, all
displacements in the z-direction are considered to be constant over the belt width; moreover, stresses and deformations
in this direction are assumed to be zero (εzz ¼ 0; εθz ¼ 0). Third, the stress acting in the normal surface to the normal
direction is neglected. Finally, the Love simplification is applied. In Eq. (1), ur and uθ represent the displacements in the
radial and circumferential directions, respectively, and the basic form of these displacements are represented in Eqs. (1-3).
Here, n and ω represent the values of wave length and wave frequency, respectively, that is, the two directional
displacements are composed of a function of the spatial and time variables. Young's modulus, moment of inertia, radius
and width of the ring are represented by E, I, R and h, respectively. In addition, A represents the cross-sectional area (b
(width)� h) and p0 and Ω are the inner pressure and the rotational speed, respectively. Two directional stiffness and
distributed load per unit area are represented by kr , kθ , qr and qθ , respectively. Here, the subscripts r and θ indicate the radial
and circumferential directional components, respectively. The pretension force σ0

θA is represented as
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The first and second terms on the right hand side in Eq. (2) are the induced forces due to the inflation pressure and the
centrifugal force, respectively. The equation of motion in Eq. (1) is represented in local (Lagrangian) coordinates, but it
should be transformed into global (Eulerian) coordinates by the application of Reynolds' theorem because laser Doppler
vibrometry (non-contact sensor) is used in this research to measure the responses [8]. The mathematical expression of the
theorem is given below:
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The left hand side of Eq. (3) represents the local coordinates (Lagrangian), and the first term on the right hand side
represents the global coordinates (Eulerian). If this equation is applied to Eq. (1), then the resultant can be represented by
matrix form
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