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a b s t r a c t

The Prediction Error Method (PEM) is related to an optimization problem built on input/output data
collected from the system to be identified. It is often hard to find the global solution of this optimization
problem because the corresponding objective function presents local minima and/or the search space
is constrained to a nonconvex set. The shape of the cost function, and hence the difficulty in solving
the optimization problem, depends directly on the experimental conditions, more specifically on the
spectrum of the input/output data collected from the system. Therefore, it seems plausible to improve
the convergence to the global minimum by properly choosing the spectrum of the input; in this paper, we
address this problem.We present a condition for convergence to the global minimum of the cost function
and propose its inclusion in the input design.We present the application of the proposed approach to case
studies where the algorithms tend to get trapped in nonglobal minima.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Prediction ErrorMethod (PEM) for parameter identification
uses input–output data collected from the process to form a cost
function. The parameters are then estimated as the solution of the
optimization of this cost function. Under mild assumptions, the
global minimum of the cost function is a consistent estimate of the
model parameters, and the asymptotic variance equals the limit
of the Cramér–Rao Bound. Therefore, identification by means of
PEM provides a consistent and otherwise statistically appealing
estimate of the system parameters and transfer function, provided
that the global minimum of the cost function is obtained by the
optimization procedure (Ljung, 1999).

One difficulty in applying the PEM method is that in many
cases achieving the global minimum may prove difficult (Ljung,
2010; Zou, Tang, & Ding, 2012), for two main reasons: the cost
function is usually not convex and the problem is constrained to a
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nonconvex set — namely, the set of parameters which yields stable
predictors. Currently adopted solutions to this problem consist
mainly in searching for good initial conditions to initialize the
optimization, which is performed with some standard algorithm
— steepest descent, Newton–Raphson, Levenberg–Marquardt, and
the like. A ‘‘good’’ initial condition is one that is close enough
to the global minimum to begin with, that is, closer to it than
any local maxima or minima that would prevent convergence to
the global minimum if they happened to be in the optimization
path. Although there seem to be no firmly established guarantees
that these solutions yield the global minimum, they have been
successfully applied for many years. They are able to achieve
the global minimum of the objective function in most cases, but
failure to do so is not such an uncommon occurrence either. As
the model order becomes larger, the trend to get trapped in local
minima or to ‘‘converge’’ to the boundary of the search space, thus
providing a useless model, seems to grow; we provide a couple of
such examples in this paper. This problem has received renewed
interest in the past few years, as pointed out in Ljung (2010), and
different approaches have emerged to cope with it, such as the
use of resampling schemes to the input–output data (Garatti &
Bitmead, 2010) and the approximation of the process model by
(potentially high order) linearly parametrized model structures to
obtain convex cost functions (Grossmann, Jones, & Morari, 2009;
Hjalmarsson, Welsh, & Rojas, 2012).

In this work, we present a different approach to the conver-
gence problem. We focus on the cost function itself and its shape,
trying to avoid the very existence of local minima and maxima. If
the cost function has a ‘‘good’’ shape, meaning that it does not have
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local extrema other than the global minimum or inflection points,
then it is easier for any gradient based optimization algorithm to
converge to the global minimum, even if initialized far from the
global minimum.We analyzewhat are the conditions under which
the cost function has a ‘‘good’’ shape. We show that this prop-
erty depends on the experimental conditions, more specifically on
the spectrum of the input/output data collected from the system.
Therefore, it is possible to improve convergence to the global min-
imum by properly choosing the spectrum of the input signal.

As a next step, we apply this concept to experiment design:
we present the use of input design as a tool to ensure that the
cost function’s shape will be amenable to optimization. Typically,
input design is formulated as an optimization problem on the
input, where several different constraints may be applied. These
constraints usually refer to the cost of the identification procedure
and/or the quality of the model obtained at the global minimum
of the cost function. We propose the addition of a convergence
constraint to the input design, aiming to obtain an input spectrum
such that the cost function will not present local extrema within a
given set, which can be made as large as desired. In doing so, we
will improve the convergence of iterative algorithms to the global
minimum of the PE criterion.

The paper is organized as follows. Section 2 presents basic
definitions and the problem formulation. Section 3 presents
desired properties of the optimization problem. Conditions about
the convergence of the methods are described in Section 4.
Input design as a tool to improve the convergence to the global
minimum is shown in Section 5. Section 6 presents case studies,
and concluding remarks are given in Section 7.

2. Problem formulation

We consider prediction error identification of a linear time-
invariant discrete-time single-input–single-output ‘‘true system’’:

S : y(t) = G0(z)u(t)+ H0(z)e(t) (1)

where G0(z) and H0(z) are the process transfer functions, u(t) is
the input and e(t) is white noise with variance σ 2

e . Both transfer
functions are rational and proper; furthermore, H0(z) is monic,
i.e. H0(∞) = 1. To be precise, we shall define S , [G0(z) H0(z)].
The signal u(t) is assumed to be quasistationary (Ljung, 1999).
We also assume that the data is collected in open loop such that
Ē[u(t)e(s)] = 0 ∀t, swhere

Ē[f (t)] , lim
N→∞

1
N

N
t=1

E[f (t)]

with E[·] denoting expectation (Ljung, 1999).
In this paper we consider the identification of linear models

y(t) = G(z, θ)u(t)+ H(z, θ)e(t) (2)

where G(z, θ) and H(z, θ) are rational and proper transfer
functions and θ represents the parameters to be identified. The
set M

∆
= {[G(z, θ) H(z, θ)] ,∀θ ∈ Dθ } is called the model set.

The search space Dθ is usually constrained to be such that the
predictors are BIBO-stable ∀θ ∈ Dθ .

We assume that the numerator and denominator of the model
are affine functions of the unknown parameters, so that the
transfer functions G(z, θ) and H(z, θ) have the structure

G(z, θ) =
BT (z)θ

1 + F T (z)θ
, H(z, θ) =

1 + CT (z)θ
1 + DT (z)θ

, (3)

where the vectors B(z), C(z),D(z), F(z) ∈ Rn are composed of
fixed transfer functions and θ ∈ Rn corresponds to the unknown
parameter vector of the model. This structure is more general than
the structures used in Goodwin, Agüero, and Skelton (2003), Zou

and Heath (2009) and Zou and Heath (2012) and encompasses
all the classical model structures: Box–Jenkins, Output Error (OE),
ARMAX, ARX.

We also consider that the systembeing identified can be exactly
described within the model class considered, as formalized by the
following assumption.

Assumption 1. S ∈ M.
The real system S belongs to the model set M, i.e. ∃ θ0 ∈ Dθ

such that

G(z, θ0) = G0(z) and H(z, θ0) = H0(z). �

Prediction error identification based on N input–output data
consists in finding, among all themodels in the pre-specifiedmodel
set, one that provides the minimum value for the prediction error
criterion, that is, one that solves the following optimization

θ̂N = argmin
θ

VN(θ) (4)

VN(θ) =
1
N

N
t=1

[ŷ(t, θ)− y(t)]2 (5)

where the optimal one-step-ahead predictor is given by

ŷ(t, θ) = H−1(z, θ)G(z, θ)u(t)+ (1 − H−1(z, θ))y(t). (6)

PEM has the property (Ljung, 1999) that under mild conditions
the parameter estimate θ̂N converges w.p.1, for N → ∞, to a set

Θ∗
= {θ∗ , argmin

θ∈Dθ
V (θ)}, (7)

with

V (θ) , Ē[y(t)− ŷ(t, θ)]2. (8)

If S ∈ M, then θ0 ∈ Θ∗. Moreover, under appropriate
conditions the cardinality of the set Θ∗ is one, that is, θ0 is
the unique global minimum of V (θ). Necessary and sufficient
conditions for uniqueness of the global minimum are local
identifiability of the model structure and local informativity of the
experiment, as shown recently in Bazanella, Bombois, and Gevers
(2012). Under these conditions, the parameter error converges to
a Gaussian random variable:
√
N(θ̂N − θ0)

N→∞
−→ N (0, Pθ0), (9)

where

Pθ0 =

 1
σ 2
e
Ē

 ∂ ŷ(t, θ)
∂θ


θ=θ0


∂ ŷ(t, θ)
∂θ


θ=θ0

T
−1

.

In this paper, we study the properties of the optimization
problem defined in (4), and approximate the properties of VN(θ)
by those of V (θ), due to the uniform convergence of the former to
the latter (Ljung, 1999; Pintelon & Schoukens, 2001; Söderström &
Stoica, 1989). This approximation is very useful because VN(θ) is
stochastic and V (θ) is a deterministic function. By the application
of Parseval’s theorem this function can be written as:

V (θ) =
1
2π

 π

−π

H−1(ejω, θ)H0(ejω)
2 σ 2

e

+
H−1(ejω, θ)(G0(ejω)− G(ejω, θ))

2Φu(ω)dω

whereΦu(ω) is the spectrum of the input signal u(t).
The solutions of the optimization problems (4) and (7) are the

points in the search space Dθ which minimize the respective cost
functions, and we will henceforth refer to as the global minimum;
see the following definition.
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