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a b s t r a c t

The Smooth Decomposition (SD) is a statistical analysis technique for finding structures in
an ensemble of spatially distributed data such that the vector directions not only keep the
maximum possible variance but also the motions, along the vector directions, are as
smooth in time as possible. In this paper, the notion of the dual smooth modes is
introduced and used in the framework of oblique projection to expand a random response
of a system. The dual modes define a tool that transforms the SD in an efficient modal
analysis tool. The main properties of the SD are discussed and some new optimality
properties of the expansion are deduced. The parameters of the SD give access to modal
parameters of a linear system (mode shapes, resonance frequencies and modal energy
participations). In case of nonlinear systems, a richer picture of the evolution of the modes
versus energy can be obtained analyzing the responses under several excitation levels.
This novel analysis of a nonlinear system is illustrated by an example.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Karhunen–Loève Decomposition (KLD) method, also named Proper Orthogonal Decomposition (POD), has been
extensively used as a tool for analyzing random fields. The KLD is a statistical analysis technique for finding the coherent
structures in an ensemble of spatially distributed data which defines an optimum basis in terms of energy. It has been
advantageously used in different domains as, for example, the stochastic finite elements method [1,2], the simulation of
random fields [3], the modal analysis of linear and nonlinear systems [4,5], and construction of reduced-order models [6,7].

A modified decomposition, that is not orthogonal in the Euclidean sense, named Smooth Decomposition (SD), is
considered here. The SD can be viewed as a projection of an ensemble of spatially distributed data such that the vector
directions of the projection not only keep the maximum possible variance but also the motions resulting along these vector
directions are as smooth in time as possible. These vector directions (or structures, or smooth modes) are defined as the
eigenvectors of the eigenproblem defined from the correlation matrices of the random field and of the associated time
derivative.

The basic idea of this decomposition derives from the optimal tracking approach proposed in [8]. SD was formulated as a
multivariate data analysis in [9] and used as a modal analysis tool. Modal analysis of randomly excited system was
considered in [10]. The SD approach was developed in cases of time-continuous stationary random vector processes in [11],
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in case of time-continuous stationary random fields in [12] and extended to the time-continuous non-stationary random
vector processes in [13].

Recently, SD was also considered to generate reduced bases for discrete nonlinear dynamic systems (see [14,15]) and
used in [16] to extract the modal parameters of a vehicle suspension system. The use of data to extract modal parameters
was considered in [17].

In this paper, the main properties of the SD are discussed. The new notion of the dual smooth modes is introduced and
used in the framework of oblique projection to expand the random response given in the dual smooth expansion. Some
optimality properties of this expansion are shown. The parameters of the SD (dual smooth modes and the smooth values)
are interpreted in terms of normal modes and resonance frequencies resulting in the modal analysis of a linear system using
output-only data. Also, the introduction of the dual modes gives a new picture of the dynamics in terms of energy of the
modes. The two pictures, in terms of frequencies and of energies, allows a richer interpretation of the dynamics. This
approach overcomes some limitations of the POD. A novel modal analysis of nonlinear system is also proposed.

2. Smooth Decomposition

2.1. Decomposition principle

Let fUðtÞ; tARg be a Rn�valued random process indexed by R. We assume fUðtÞ; tARg to be a zero-mean second-order
stationary ergodic process that admits a time derivative process f _UðtÞ; tARg which is also a second-order stationary ergodic
process. We take RUðτÞ ¼ EðUðtþτÞTUðtÞÞ and R _U ðτÞ ¼ Eð _UðtþτÞT _UðtÞÞ to denote the covariance matrix function of fUðtÞ; tARg
and f _UðtÞ; tARg respectively. We assume that the covariance matrices (of UðtÞ and _UðtÞ) RUð0Þ and R _U ð0Þ are symmetric
positive-definite matrices.

As described in [13], the SD of fUðtÞ; tARg is designed to obtain the most characteristic deterministic vectors ΓðARnÞ
maximizing the ratio between the ensemble average of the inner product between UðtÞ and Γ and to the inner product
between _UðtÞ and Γ

max
ΓARn

J Γ� �
with J Γ� �¼ EððUðtÞTΓÞ2Þ

Eðð _UðtÞTΓÞ2Þ
¼ ΓTRUð0ÞΓ
ΓTR _U ð0ÞΓ

: ð1Þ

This maximization problem is equivalent to the conditional extreme value problem

max
ΓARn

ΓTRUð0ÞΓ subject to ΓTR _U ð0ÞΓ¼ 1: ð2Þ

The objective function JðΓÞ significantly differs from that used to define the KLD (see for example [18]). Here the
denominator of the objective function takes the covariance matrix of the time-derivative process into account. The
numerator and the denominator which seem to be time-independent can be related to the time evolution of trajectories of
the random processes fUðtÞ; tARg and f _UðtÞ; tARg over a long time following ergodic property as

E ðUðtÞTΓÞ2
� �

¼ lim
T� 41

1
2T

Z T

�T
ðUðsÞTΓÞ2 ds ð3Þ

E ð _UðtÞTΓÞ2
� �

¼ lim
T� 41

1
2T

Z T

�T
ð _UðsÞTΓÞ2 ds ð4Þ

where UðsÞ and _UðsÞ in the right-hand-side of the equations denote one of the trajectories and not a random variable as in
the left-hand-side (for UðtÞ and _UðtÞ). From the ergodic point of view, maximizing JðΓÞ corresponds to find a structure Γ
which captures the maximum possible variance in terms of time average of the time displacement field, simultaneously
with the minimum possible variance of the time velocity field (in accordance with the drift tracking algorithm proposed
in [8]).

The condition for local optimality is given by the gradient of the objective function JðΓÞ or by the Lagrange multipliers
method applied to (2) and reduces to the following generalized eigenproblem:

RUð0ÞΓk ¼ λkR _U ð0ÞΓk: ð5Þ
Due to the properties of the covariance matrices (which are symmetric positive-definite matrices), (5) admits n real

positive eigenvalues ðλk) and the associated eigenvectors satisfy the following properties:

ΓT
kRUð0ÞΓl ¼ΓT

kR _U ð0ÞΓl ¼ 0 for ka l and ΓT
kRUð0ÞΓk ¼ λkΓT

kR _U ð0ÞΓk:

In the sequel we will assume that the eigenvalues λk are sorted in descending order and the eigenvectors are scaled to
satisfy the constraint condition

ΓTR _U ð0ÞΓ¼ In; ð6Þ
where Γ¼ Γ1Γ2…Γn½ � and In denotes the identity matrix.
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