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a b s t r a c t

In this paper, we present the second-order of cyclostationarity to detect and diagnose the
fatigue damage of the stainless steel 316l subjected to low cycle fatigue (LCF). LCF is
defined by repetitive cycling in a low stress and a short period. The vibration response of
material subjected to LCF provides information linked to the solicitation and to the fatigue
damage. Thus, we considered a cantilever beam with breathing cracks and assumed that
under the solicitation, breathing cracks generates non-linearity in the stiffness of the
material and this one decreases with the damage. We used the second-order of the
cyclostationarity to reveal this non-linearity and showed that the fatigue provide a
random component in the signal, which increases with the fatigue damage. Thus, in the
specific case of a material subjected to LCF, with a non-linear stiffness, we propose a new
methodology to detect and diagnose the fatigue damage using a vibration signal. This
methodology is based on the second order of the cyclostationarity.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fatigue damage is one of the main causes of machine defects found in industry. The detection of this type of damage is
very difficult and affects maintenance scheduling. During fatigue damage, we observe the appearance of microcracks that
grow until the effective damage of the structure and change its stiffness and damping properties [1]. In the case of a
cantilever beam subjected to alternating bending, these cracks present two states: (1) opening crack and (2) closing crack,
which define the breathing crack model. The breathing crack impacts the stiffness of the material, which becomes non-
linear. In fact, the presence of breathing cracks in a beam results in non-linear dynamic behavior which gives rise to
superharmonics in the spectrum of the response signals. The amplitude of these ones depends on the location and depth of
any cracks present [2]. Many researchers have performed vibration measurements and analysis techniques to detect this
non-linearity caused by the breathing crack. Indeed, in [3], the authors detected this non-linearity using bispectral analysis.
Prime and Shevitz [4] have employed instantaneous frequencies and time frequency transforms to detect and locate the
crack, making use of the non-linearity. Loutridis et al. [5] have also used the instantaneous frequency for the study of forced
vibration behavior and crack detection of cracked beam. Crespo and Ruotolo [6] demonstrated that damage identification is
possible using the so-called higher order frequency response functions (FRFs) based on the Volterra series. Rizos et al. [7]
suggested using the vibration modes for the identification of crack location in a cantilever beam. In [8], a new concept of
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non-linear output frequency response functions (NOFRFs) is exploited to detect cracks in beams using frequency domain
information. Benfrattello et al. [9] used higher order statistics to locate a fatigue crack on beams vibrating under Gaussian
excitation.

In this paper, the non-linearity provided by the breathing crack is considered and a novel non-linear technique for crack
detection in mechanical structures is investigated. We propose a robust diagnostic of damage based on vibrational
measurement with particular regard to the second-order of cyclostationarity and a new damage indicator. Cyclostationarity
is a signal processing tool which allows us to characterize in a signal a coupling between random phenomenon (typically in
our case the fatigue damage) and non-linear phenomenon (due in our case to the stiffness). Thus, our study was carried out
on the dynamic response of fatigue cracks and we used the second-order of cyclostationarity to reveal this non-linearity and
showed that the fatigue provide a random component in the signal, which increases with fatigue damage.

2. Dynamic response of an cantilever beam subjected to alternative bending

2.1. Breathing crack model and dynamic equation

Most researchers have used open and close crack models in their studies and have claimed that the change in natural frequency
might be a parameter used to detect the presence of a crack [10,1,2,11]. In their model, the structure has only two characteristic
stiffness values: (i) a larger value corresponding to the state of crack closing and (ii) a smaller value for crack opening. Therefore, the
stiffness of a structure containing a real fatigue crack may change continuously with time as the load oscillates. Examining the
dynamic response of a fatigue crack at its first mode in a single-degree-of-freedom system, the stiffness may be expressed as [12]

kðtÞ ¼ k0þkΔcð1þ cosω0tÞ; ð1Þ
where ω0 is the crack breathing frequency, k0 is the stiffness of the structure when the crack is fully open, and the amplitude of the
stiffness change is given by

kΔc ¼ 1
2 kc�k0ð Þ; ð2Þ

kðtÞ ¼
kc if ω0t ¼ l; lAN; the crack is completely closed:
k0 if ω0t ¼ l�1=2; lAN; the crack is in the fully open state:

if not; it is partial closure:

8><
>:

The coefficients kc and k0 are determined from the stiffness properties of the structure when the crack is completely
open and completely closed respectively (Fig. 1).

For the sake of simplicity, a cantilever beam is modeled as a one-degree-of-freedom as shown in Fig. 2. Under the action
of the excitation force FðtÞ, alternate crack opening and closing causes the equation of motion of the cracked beam to be
non-linear. This single-degree-of-freedom system is governed by an equation for forced vibration expressed as

m €xðtÞþc _xðtÞþkðtÞxðtÞ ¼ FðtÞ; ð3Þ
wherem is the mass, c is the damping coefficient, kðtÞ is the non-linear stiffness, FðtÞ is an external force (periodic excitation
of pulsation ω) and xðtÞ is the displacement.

Nomenclature

Pf�g time-averaging operator for extracting all per-
iodic components

Rf�g residual operator
α cyclic frequency variable
P0f�g time-averaging operator for extracting a

constant value
ω excitation force pulsation
ω0 crack breathing pulsation
τ time-lag variable
ϑðFÞ magnitude linked to the excitation force
a0; an Fourier coefficient
bðtÞ; bij Gaussian white noise
c damping of the specimen
DCSαx ðNÞ magnitude of the cyclic frequency α at the

number of cycles N
f (spectral) frequency variable
FðtÞ excitation force

f n natural frequency
ICS2ðα;NÞ new cyclostationary fatigue damage indicator
kðtÞ non-linear stiffness
m mass of the specimen
mxðtÞ synchronous average
N cycle number variable
N0 cycle number corresponding at the start of

the test
Pαx ðf ;Δf Þ cyclic modulation spectrum
Pxðt; f ;Δf Þ instantaneous power envelope
Rαxr ðτÞ cyclic autocorrelation function of the residual

signal xrðtÞ
Rxr ðt; τÞ instantaneous autocorrelation function of the

residual signal xrðtÞ
T time period
t time variable
xrðtÞ residual part or random part of the signal xðtÞ
xΔf ðt; f Þ filtered signal in the frequency band

½f �Δf =2; f þΔf =2�
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