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a b s t r a c t

Autonomous pattern formation phenomena are ubiquitous throughout nature. The goal of this paper is to
show the possibility to effectively generate various desired spatial patterns by guiding such phenomena
suitably. To this end, we employ a reaction–diffusion system as amathematical model, and formulate and
solve a novel pattern formation control problem. First, we describe the control objective in terms of spatial
spectrum consensus, which enables utilize recent advances on networked control system theory. Next,
the effectiveness of the proposed control law is evaluated theoretically by exploiting the center manifold
theorem, and also numerically by simulation. The Turing instabilities play a crucial role throughout the
paper.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Regulation of systems to a desired state is a typical control ob-
jective. In order to achieve this, negative (often high gain) feed-
back of the regulation error is widely accepted design policy. On
the other hand, there exist a large variety of autonomous pattern
formation phenomena in nature. Then, it might be yet another de-
sign policy to purposefully guide these phenomena to generate a
desired pattern effectively. Actually, it would be a significant con-
tribution to many practical applications, e.g., chemical reactions
and systems biology (Camazine, Ristine, Didion, & Thies, 2003;
Mikhailov & Showalter, 2006;Murray, 2003), if both the usefulness
and also the limitations of such a feedback scheme are revealed.
The contribution of this paper is the formulation and solution of
a novel pattern formation problem in reaction–diffusion (RD) sys-
tems from this point of view.

✩ The material in this paper was partially presented at the 2013 American
Control Conference (ACC), June 17–19, 2013, Washington, DC, USA. This paper was
recommended for publication in revised form by Associate Editor Claudio de Persis,
under the direction of Editor Frank Allgöwer.

E-mail addresses: kashima@amp.i.kyoto-u.ac.jp (K. Kashima), togw@meiji.ac.jp
(T. Ogawa), tatsunari@chiba-u.jp (T. Sakurai).
1 Tel.: +81 75 753 5512; fax: +81 75 753 5512.

In order to balance exposition simplicity and intuitive under-
standing of the resulting phenomena, we investigate an activa-
tor–inhibitor RD system with cubic nonlinearities defined on a
square domain; see Section 2.1 for its formal definition. Thismodel
is simple, however, captures the essential mathematical structure
of a large number of superficially different problem settings. As
shown in later sections, this model can autonomously generate
multiple stationary non-uniform patterns under certain parame-
ter settings. For example, Fig. 1 depicts a sequence of snapshots of
one of the spatio-temporal state variables; see Section 3.1 for de-
tails. We can observe that the randomly generated initial pattern
finally converges to a roll (stripe) pattern.

We next present a deeper discussion of the example in Fig. 1, in
order to providemore precise insight into our contribution. In Fig. 1
(g)–(j)we can see specific other patterns.While these are transient,
their dynamics are slow enough to render them observable. This
suggests that we can generate wide variety of spatial patterns
by guiding the system’s inherent pattern formation mechanism
through feedback control, which is the main interest of this paper.
Actually, this is shown to be possible in later sections; see Figs. 12
and 14 in Section 4.2 for the stably generated alternative patterns
achieved by using Theorems 1–3, the main results of this paper.

It should be emphasized thatwhatweattempt is not to generate
arbitrary, given spatial profiles. Instead, we investigate a situation
like ‘‘generate a hexagonal pattern with an intensity which fits
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(a) t = 0. (b) t = 5. (c) t = 10. (d) t = 20. (e) t = 30. (f) t = 50.

(g) t = 100. (h) t = 500. (i) t = 1000. (j) t = 1500. (k) t = 3000.

Fig. 1. Autonomous spatial pattern formation: Normalized snapshots of u(t, x, y).

naturally into the system’s inherent pattern formation mechanism.’’
Since the desired pattern includes ones that are hidden, i.e., not
observable as a stationary pattern (recall Fig. 1(g)–(j)), its exact
profile is not available, from which the main drawback of this
problem arises. Our approach to circumvent this is summarized as
follows:

• In control theoretic terminology, we formulate this problem as
a spatial spectrum consensus with the following two constraints:
1. convergence of the input to zero, and 2. the instability of the
origin. This formulation is not trivial, and allows a simple linear
feedback law as well as the proof of its effect in the finite
dimensional approximated system.

• In contrast to the approximated finite dimensional analysis,
the original PDE, controlled by the proposed control law,
cannot satisfy the requirements exactly. In the paper we clarify
when, and in which sense, the requirements are satisfied
approximately and we obtain the desired pattern formation.
The key building block is the center manifold theorem, which
proves that the Turing pattern of the controlled RD system is close
to the one that we attempt to generate.

Note that, we assume spatially distributed sensing/actuation to
focus on the theoretical aspects above. Thus, the difficulty of the
problemwe pose does not lie in the infinite-dimensionality, which
certainly makes boundary control problems more challenging
(Curtain & Zwart, 1995; Krstic & Smyshlyaev, 2008).

Related works from the controls literature are summarized
next. Arcak et al. gave a less conservative sufficient condition to
guarantee the nonexistence of non-uniform spatial patterns (Arcak,
2011), as well as a specific Turing instability mechanism from a
systems biology viewpoint (Hsia, Holtz, Huang, Arcak, & Maharbiz,
2011). However, detailed analysis of the resulting pattern, and
control system design, are not fully explored. In the context of
distributed parameter system theory, methods were developed
for controlling semilinear equations (Henry, 1981), including RD
systems, fromvarious aspects. In theseworks, the control objective
is usually the stabilization of the origin (as a spatial profile), which
shows a clear contrast to our case where we attempt to generate
non-uniform spatial patterns selectively by making an explicit use of
the system’s instability.

Froma technical viewpoint, in recent years there has beenmuch
research effort on diffusively coupled dynamical systems, due to
their connection to consensus protocol ofmulti-agent systems (Fax
& Murray, 2004; Mesbahi & Egerstedt, 2010), coupled oscillators
(Shafi, Arcak, Jovanović, & Packard, 2013; Stan & Sepulchre, 2007;
Steur, Tyukin, &Nijmeijer, 2009), to list a few. Some of these results
actually provide useful mathematical tools to show consensus
of identical complex-valued subsystems. However, our problem
formulation is conceptually different. A preliminary version of this
work was presented in Kashima, Ogawa, and Sakurai (2013).

The organization of this paper is as follows. In Section 2 a
brief introduction of Turing instabilities is followed by the novel

formulation of the feedback control problem for selective pattern
formation. In Section 3 we reformulate and solve the problem
based on spatial spectrumdynamics; the control law is given in the
form of partial diffusive coupling and pinning, both in the spatial
spectrum domain. In Section 4 we return to the original RD system
to evaluate the pattern formation by the proposed feedback control
law. Conclusions are made in Section 5.

Notation. The set of real numbers, complex numbers (with nega-
tive real part) and integers areR,C (C−) andZ. For z ∈ C, Re z is its
real part. For complexmatrix A, we denote the transpose by AT, the
Hermitian conjugate (conjugate transpose) by A∗, the set of eigen-
values by eig(A), and the maximal singular value by ∥A∥. We say A
is Hurwitz if eig(A) ⊂ C−. The matrix Kronecker product is repre-
sented by⊗. For complex vector x,∥x∥ :=

√
x∗x. The columnvector

of ones, of compatible dimensions, is denoted by 1 := [1, . . . , 1]T.

A spatial distribution on the square domain Ω := [0, Lx] ×

[0, Ly] is referred to as a profile and represented by bold font such
as z(x, y), (x, y) ∈ Ω . In particular, a profile of specific shape
(e.g., roll, hexagonal) is called a pattern. The trivial uniform profile
zeq(x, y) := 0 on Ω . The Hilbert space L2(Ω) is the set of square
integrable profiles equipped with the inner product

⟨u1, u2⟩L2(Ω) :=


Ω

u∗

2(x, y)u1(x, y)dxdy.

For m = (mx,my) ∈ Z2, we define

pm(x, y) :=
1
LxLy

exp

2π j


mxx
Lx

+
myy
Ly


(1)

where j :=
√

−1. This family of scalar functions satisfies pm =

p∗
−m, and constitutes a complete orthonormal system for L2(Ω). For

a set M, −M := {−m : m ∈ M} and ±M := M ∪ (−M). We take
Z2+

⊂ Z2 such that Z2+
∩ (−Z2+) = ∅ and Z2

= (0, 0) ∪ (±Z2+).
The Laplacian operator is ∆ :=

∂2

∂x2
+

∂2

∂y2
. The (partial) derivative

with respect to time t is denoted by the dot; e.g., ż(t, x, y).

2. Problem formulation

2.1. Mathematical model

Throughout this paper, we investigate the following dy-
namics of real-valued two-dimensional spatio-temporal variable
z(t, x, y) := [u(t, x, y), v(t, x, y)]T ∈ R2 defined on the square
domain Ω:
u̇ = a11u − a12v − u3

+ du1u + w,
v̇ = a21u − a22v + dv1v, (2)

with the standard periodic boundary conditions
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