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This paper investigates the consensus problem of general linear multi-agent systems under the frame-
work of optimization. A novel distributed receding horizon control (RHC) strategy for consensus is pro-
posed. We show that the consensus protocol generated by the unconstrained distributed RHC can be
expressed in an explicit form. Based on the resulting consensus protocol the necessary and sufficient
conditions for ensuring consensus are developed. Furthermore, we specify more detailed consensus con-

ditions for multi-agent systems with general and one-dimensional linear dynamics depending on Riccati
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difference equations (RDEs), respectively. Finally, a case study verifies the proposed scheme and the cor-
responding theoretical results.
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1. Introduction

In the last two decades, the cooperative control of networked
multi-agent systems has received a lot of attention due to its wide
applications. In particular, the consensus problem is of significant
importance, and has inspired much progress, e.g., Moreau (2005),
Olfati-Saber and Murray (2004) and Ren and Beard (2005). In this
paper, we are interested in solving the consensus problem of multi-
agent systems from the distributed optimal control perspective.
The multi-agent system under study is of fixed directed network
topology and general linear time invariant (LTI) dynamics asso-
ciated with each agent. The objective of this paper is to design
a locally optimal consensus strategy for each agent, and further
to investigate under what conditions the closed loop system can
achieve consensus by the designed strategy.

The optimality of control protocols brings many desired prop-
erties such as phase and gain margin, leading to robustness of the
closed loop systems. The core difficulty of the cooperative optimal
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control for multi-agent systems lies in the fact that the central-
ized optimization problem generally cannot be distributed among
agents, with few exceptions (Cao & Ren, 2010; Hengster-Movric &
Lewis, 2014). As a result, the best way of circumventing the dif-
ficulty is to adopt the locally optimal control strategy and utilize
regional information to address the system-level interaction and
coupling, approximately achieving some global or cooperative be-
haviors.

In the literature, one approach to the optimal cooperative
control is the linear quadratic regulation (LQR) scheme. For
example, the distributed LQR problem of multi-agent systems with
LTI dynamics is studied in Borrelli and Keviczky (2008), showing
that the overall stability can be guaranteed by appropriately
designing the local LQR and using information exchanged over
networks. The consensus problem with optimal Laplacian matrix
for multi-agent systems of first-order dynamics is investigated
in Cao and Ren (2010), where it is shown that the globally optimal
Laplacian matrix can only be obtained by properly choosing the
global cost function coupled with the network topology. Recently,
the LQR-based consensus problem of multi-agent systems with LTI
dynamics and fixed directed topology is addressed in Hengster-
Movric and Lewis (2014), indicating that the globally optimal
consensus performance can be achieved by using locally optimal
consensus protocol if and only if the overall performance index is
selected in a special form depending on the network structure.

Another way of achieving the (sub-)optimal cooperative con-
trol of multi-agent systems is the distributed receding horizon con-
trol (RHC) strategy, also known as distributed model predictive
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control. Based on this approach, there have been many results de-
veloped for cooperative stabilization, formation control, and its
applications. For example, the distributed RHC-based scheme for
cooperative stabilization is proposed in Dunbar and Murray (2006)
and Miiller, Reble, and Allgéwer (2012), and the formation stabi-
lization is addressed in Keviczky, Borrelli, and Balas (2006) and
its application is reported in Keviczky, Borrelli, Fregene, Godbole,
and Balas (2008). Furthermore, the robust distributed RHC prob-
lems that can be used for cooperative stabilization are studied
in Richards and How (2007) for linear systems with coupled con-
straints and in Li and Shi (2014a) for nonlinear systems. To further
attack the unreliability of the communication networks, the co-
operative stabilization problem of multi-agent nonlinear systems
with communication delays are investigated in Franco, Magni,
Parisini, Polycarpou, and Raimondo (2008) and Li and Shi (2013,
2014b). Note that all of these results use cost functions as Lyapunov
functions to prove stability.

Even though it is very desirable to achieve optimal consen-
sus by distributed RHC scheme, there have been few results for
the consensus problem of multi-agent systems due to the diffi-
culty that the cost function may not be directly used as Lyapunov
function. In Ferrari-Trecate, Galbusera, Marciandi, and Scattolini
(2009), Ferrari-Trecate et al. study the consensus problem of multi-
agent systems of first-order and second-order dynamics, and the
sufficient conditions for achieving consensus are developed by ex-
ploiting the geometric properties of the optimal path. Zhan et al.
investigate the consensus problem of first-order sampled-data
multi-agent systems in Zhan and Li (2013), where the state and
control input information needs to be exchanged. These two re-
sults are effective to deal with special types of linear systems. In Jo-
hansson, Speranzon, Johansson, and Johansson (2008) Johansson
et al. propose to use the negotiation to reach the optimal consensus
value by implementing the primal decomposition and incremental
sub-gradient algorithm, but the effect of the network topology is
not explicitly considered.

It can be seen that the receding horizon control-based consen-
sus problem for multi-agent systems with general LTI dynamics
has not been solved, and the relationship between consensus and
the interplay between the network topology and the RHC design is
still unclear, which motivates this study. The main contribution of
this paper is two-fold.

e A novel distributed RHC strategy is proposed for designing the
consensus protocol. In this strategy, each agent at each time
instant only needs to obtain its neighbors’ state once per step via
communication network, which is more efficient than the work
in Dunbar and Murray (2006) and Li and Shi (2014a) (where
the state and its predicted trajectory need to be transmitted)
and in Miiller et al. (2012) and Zhan and Li (2013) (where the
neighbors’ information needs to be exchanged for many times
at each time instant). In addition, we show that the consensus
protocol generated by the RHC is a feedback of the linear
combination of each agent’s state and its neighbors’ states,
and the feedback gains depend on a set of difference matrix
equations. This result partially extends the results in Ferrari-
Trecate et al. (2009) and Zhan and Li (2013) to multi-agent
systems with LTI dynamics.

e Given the proposed distributed RHC strategy, a necessary and
sufficient condition for ensuring consensus is developed. We
show that, under some mild assumptions, the consensus can be
reached if and only if a simultaneous stabilization problem can
be solved. Furthermore, specific sufficient consensus conditions
depending on the Riccati difference equation (RDE) for multi-
agent systems with LTI dynamics and one-dimensional linear
dynamics are also developed, respectively.

The remainder of this paper is organized as follows. Section 2 intro-
duces some well-known results of graph theory and formulates the
problem to be studied. Section 3 presents the novel distributed RHC
scheme, and develops a detailed consensus protocol. The neces-
sary and sufficient conditions for ensuring consensus are proposed
in Section 4, and more specific sufficient consensus conditions for
multi-agent systems with LTI dynamics and one-dimensional lin-
ear dynamics are also reported in this section. The case study and
comparisons are demonstrated in Section 5. Finally, the conclusion
remarks are summarized in Section 6.

Notation. The symbol R represents the real numbers. For a real
matrix A, its transposition and inverse (if the inverse exists) are
denoted as “A™" and “A~!”, respectively. If A is a complex matrix,
then the transposition is denoted by A". Given a real (or complex)
number A, the absolute value (modulus) is defined as |A|. Given a
matrix (or a column vector) X and another matrix P with appro-
priate dimension, the 2-induced norm (or the Euclidean norm) of
X is denoted by || X]|| and the P-weighted norm of X is denoted by
IXllp & vXTPX. Given a matrix Q,Q > 0 (Q > 0) stands for
the matrix Q being positive definite (semi-positive definite). De-
fine the column operation col{xy, ..., Xy} as [}, ..., xlT,]T, where
X1, ..., Xp are column vectors. I, stands for the identity matrix
of dimension p, and 1, and 0, represent the p-dimensional col-
umn vector [1,...,1]T and [0, ..., 0], respectively. The symbol
® stands for the Kronecker product.

2. Problem formulation

Consider a multi-agent system of M linear agents. For each
agent i, the dynamics is described as

xi(k + 1) = Axi(k) + Bu;(k), (M)
where x;(k) € RP is the system state, and u;(k) € R™ is the control
input.

There exists a communication network among the M-agent
system, and the network topology is described as a directional
graph (digraph) ¢ 2 {V, &, A}. Here, V = {i,i = 1,...,M}is
the collection of the nodes of the digraph representing each agent
i, & C 'V x V denotes the edges of paired agents, and A = [a;] €
RM*M is the adjacency matrix with a; > 0. If there is a connection
from agent j to i, then a; = 1; otherwise, a; = 0. We assume
there is no self-edge in the digraph §, i.e,, a;; = 0. For each agent
i, its neighbors are denoted by the agents from which it can obtain
information, and the index set for agent i's neighbors is denoted
as N; 2 {j|(i,j) C &}, where the pair (i, j) represents that agent
i is connected to j and can directly obtain information from j. The
number of agents in ; is denoted as |.#;|. The graph § contains a
spanning tree if and only if there exists a root node that can send
information to all the other agents through directed paths. The
degree matrix is denoted as D = diag(zj’\il agjy ..., Zj’\il ayg),
and the Laplacian matrix of § is denoted as £ = D — . Arrange
the eigenvalues of £ as [A1| < |Az] < --+ < |Ay]. Assume that
the digraph § is fixed. Firstly, we recall a standing result from the
graph theory (Olfati-Saber & Murray, 2004; Ren & Beard, 2005; You
& Xie, 2011).

Lemma 1. The digraph § contains a spanning tree if and only if zero
is a simple eigenvalue of the Laplacian matrix £, i.e, A1 = 0 < |A;] <
-+ - < |Am|, and the corresponding right eigenvector of A is 1.

For the linear system in (1), a standing assumption is made: The
pair [A, B] is controllable. We assume that at each time instant k,
over the given communication network, agent i can get state in-
formation x;(k),j € ; from its neighbors. The communication
network is reliable and the information can be transmitted instan-
taneously without time consumption.
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