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a b s t r a c t

This paper investigates synchronization issues of a heterogeneous complex network with a general
switching topology in the sense of boundedness, when no complete synchronization manifold exists.
Several sufficient conditions are established with the Lyapunov method and the differential analysis of
convergence to determine the existence and estimate the convergence domain for the local and global
bounded synchronization of a heterogeneous complex network. By using the consensus convergence of a
switched linear systemassociatedwith the switching topology, explicit bounds of themaximumdeviation
between nodes are obtained in the form of a scalar inequality involving the property of the consensus
convergence, the homogeneous and heterogeneous dynamics of individual nodes for the local and global
cases. These analytical results are simple yet generic, which can be used to explore synchronization issues
of various complex networks. Finally, a numerical simulation illustrates their effectiveness.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Synchronization of populations of locally interacting units is an
active field of research with applications in science and engineer-
ing, see Arenas, Díaz-Guilera, Kurths,Moreno, and Zhou (2008), Os-
ipov, Kurths, and Zhou (2007), Pikovsky, Rosenblum, and Kurths
(2001) and references therein. From the viewpoint of complex net-
work, synchronization of complex systems is usually determined
by the dynamics of individual nodes and the coupling configura-
tion between nodes. This result has been established bymainly as-
suming that all the node dynamics are identical, see Belykh, Belykh,
and Hasler (2006), Stilwell, Bollt, and Roberson (2006), Wu (2005),
Yu et al. (2009) and Zhao, Hill, and Liu (2009). However, significant
differences commonly exist within the relevant individual nodes.
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Motivated by this, we investigate synchronization issues of com-
plex heterogeneous networks in this paper.

The behavior of complex dynamical networks with noniden-
tical nodes is much more complicated than that of the identical-
node case since synchronization manifold, guaranteed by the
diffusive condition in identical-node networks, disappears due to
the heterogeneity of individual nodes. The ultimate synchronous
trajectory, in general, has to be confined to some particular solu-
tion. Also, decompositions into a few of lower dimensional sub-
systems are no longer possible even for local synchronization of
heterogeneous networks. Thus, it is quite difficult to explore syn-
chronization of complex heterogeneous networks, and very few
results have been reported to date. A simple case for all noniden-
tical nodes shared with a common equilibrium has been studied
in Xiang and Chen (2007) and Zhao, Hill, and Liu (2011). Besides,
synchronization of coupled nonidentical chaotic systems have also
been discussed in Duan and Chen (2009), Femat, Kocarev, van Ger-
ven, and Monsivais-Pérez (2005) and Li, Chen, and Aihara (2006).

There is no doubt that a complex network of coupled noniden-
tical systems may still exhibit some kind of synchronous behav-
iors that need to be understood. Bounded synchronization is a
typical weaker form of synchronization when complete synchro-
nization is impossible. Examples include clock synchronization in
mobile robots, or task coordination of swarming animals, or the ap-
pearance of synchronized bulk oscillations in suspension of yeast
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cells, etc. Several investigations have discussed the bounded syn-
chronization issues, e.g., in stochastic complex networks (Shen,
Wang, & Liu, 2011) and consensus control of multi-agent systems
(Zhong, Liu, & Thomas, 2012). A very recent result in Zhao, Hill, and
Liu (2012) has addressed synchronization of a general dynamical
network with nonidentical nodes and symmetric coupling matrix.
Wang, Qian, andWang (2015) introduced a generalized connection
graph stability method to avoid the calculating eigenvalues of an
asymmetry coupling matrix. It is noted that the above mentioned
topology has dealt with a ‘‘slow-varying’’ structure, i.e., a continu-
ous function is simply taken as the varying connection for a time-
varying network. Such a description has limitations in handling the
varying topologies that change very quickly such as switches due
to connection failures and new creations. In general, the relevant
time-varying results exhibit strong conservativeness, particularly
in analyzing an unconnected topology. A few recent results (Frasca,
Buscarino, Rizzo, Fortuna, & Boccaletti, 2008; Wang, Shi, & Sun,
2008) have discussed switching synchronization issues of amobile
agent network under the fast-switching constraint.More results on
switching networks have focused on the consensus of multi-agent
systems from the viewpoint of control science, see Olfati-Saber and
Murray (2004) and Ren and Beard (2005) for example. This paper
investigates bounded synchronization of a heterogeneous complex
switched network. With the Lyapunov function approach as well
as differential analysis of convergence, we derive several bounded
synchronization conditions for the heterogeneous network. In par-
ticular, the problem of bounded synchronization under the general
switching topology is solved by partially using the techniques of
the consensus problem because of the similarity of synchroniza-
tion in complex coupled networks and consensus in multi-agent
systems.

The rest of this paper is organized as follows. Section 2 presents
a heterogeneous complex switched network and somemathemat-
ical preliminaries. In Section 3, we derive several sufficient condi-
tions to guarantee the local and global bounded synchronization
of the considered network, respectively. A numerical example is
given to elucidate the effectiveness of the presented results in Sec-
tion 4. Section 5 concludes the investigation.

2. A heterogeneous network model

Consider a nonlinear system of N linearly and diffusively
coupled nonidentical nodes which are represented by

ẋi(t) = fi(t, xi) − c
N
j=1

Lσ ijΓ xj(t), i = 1, 2, . . . ,N, (1)

where xi = [xi1, xi2, . . . , xin]T ∈ Rn is the state vector of node i,
fi : [0, ∞) × D → Rn is continuously differentiable with D ⊆ Rn,
governing the dynamics of each node, c > 0 is the overall coupling
strength, Γ = diag(γ1, . . . , γn) ∈ Rn×n is the inner-coupling
matrix, the switching signal σ(t) : [0, ∞) → P = {1, 2, . . . , p}
with p < ∞ is a piecewise constant function with successive
times to describe the topology switches between subintervals.
In network (1), the communication topology is represented by
digraph Gσ and described in amatrix form by the Laplacian Lσ(t) =

(Lσ ij) ∈ RN×N . The Laplacian of digraph Gσ is defined as follows: If
there is a directed connection from node j to node i (i ≠ j) at time
t , then Lσ ij < 0; otherwise Lσ ij = 0, and its diagonal entries satisfy
Lσ ii = −

N
j=1,j≠i Lσ ij, ∀i, and σ(t).

For simplicity, let G = {Gi
|i ∈ P } denote the set of all

possible communication graphs of network (1) in the process of
switching, each of which represents a digraph with the Laplacian
Li for i ∈ P . Also, consider an infinite sequence of nonempty,
bounded and contiguous time intervals [tk, tk+1), k = 0, 1, . . . ,

with t0 = 0 and tk+1 − tk ≤ Tmax for some positive constant Tmax.
In each interval [tk, tk+1), there is a sequence of non-overlapping
subintervals [tk0 , tk1), [tk1 , tk2), . . . , [tkmk−1

, tkmk
) with tk0 = tk,

tkmk
= tk+1 satisfying tkj+1 − tkj ≥ Tmin, 0 ≤ j ≤ m − 1, for some

integerm ≥ 1 and a given positive constant Tmin. In particular, the
digraph Gσ with the Laplacian Lσ switches at tkl and it does not
change during each subinterval [tkl , tkl+1). Throughout this paper,
notations for graphs and their corresponding Laplacian matrices
are not differentiated unless stated otherwise.

Assumption 1 (A1). The dynamics of each isolated node can be
expressed in the form of fi(t, xi) = f(t, xi,X) + gi(t,X) and
∥gi∥ ≤ δ holds uniformly for all nodes with constant δ as the
heterogeneity parameter, where f : [0, ∞) × D × · · · × D → Rn,
gi : [0, ∞)×D×· · ·×D → Rn, X = [xT1, x

T
2, . . . , x

T
N ]

T
∈ RnN , and

∥ · ∥ denotes the Euclidean norm.

Note that the heterogeneous dynamics gi(t,X) represents the
differences arising from the individual nodal dynamics. A common
choice of f is f(t, xi,X) =

N
i=1 ξifi(t, xi), where ξi ≥ 0 for all

i and
N

i=1 ξi = 1. Sometimes, one can simply select f(t, xi,X) =

f(t, xi) according to the nodal dynamics for some i. Then, gi(t,X) =

fi(t, xi) − f(t, xi), and the estimation δ associates with the states
of nodes. It is noted that δ can be analytically calculated for many
coupled limit-cycle or chaotic systems as if the bound of nodal
states is known as a priori. Besides, the function gi(t,X) can also
take the noise or external disturbances into account.

Now, let F(t,X) = [fT(t, x1,X), . . . , fT(t, xN ,X)]T ∈ RnN ,
G(t) = [gT

1(t,X), . . . , gT
N(t,X)]T ∈ RnN . Then, network (1) can be

rewritten in a block form as

Ẋ(t) = F(t,X) − c(Lσ ⊗ Γ )X(t) + G(t), (2)

where ⊗ is the Kronecker product. From A1, G(t) ≡ 0 means
that the heterogeneity among the node dynamics disappears. Then,
network (2) reduces to a complex network of coupled identical
nodes

Ẋ(t) = F(t,X) − c(Lσ ⊗ Γ )X(t). (3)

For network (3), there always exists an invariant synchronization
manifold S = {(xT1, . . . , x

T
N)T ∈ RnN

: xi = xj, ∀i, j}. We
denote an orthonormal basis of S by ṽ , (vT ⊗ In) ∈ Rn×nN and
a basis of orthocomplement space of S (denoted by S+) by ṽ+ ,
(vT

+
⊗ In) ∈ Rn(N−1)×nN , where v =

1
√
N
[1, 1, . . . , 1]T ∈ RN , and

v+ ∈ RN×(N−1). Then, it is easy to verify that X ∈ S ⇐⇒ ṽ+X = 0.
Left-multiplying Eq. (2) by ṽ+ yields

Ẏ(t) = ṽ+F(t, ṽT+Y(t) + X(t)) − c(L̃σ ⊗ Γ )Y(t) + ṽ+G(t), (4)

where In is an n × n identity matrix, Y = ṽ+X ∈ Rn(N−1), X =

[xT, xT, . . . , xT]T ∈ RnN , x =
1

√
N
ṽX is the average state trajectory,

and L̃σ = vT
+
Lσ v+. Obviously, Y(t) = 0 is an equilibrium point of

system

Ẏ(t) = ṽ+F(t, ṽY(t) + X(t)) − c(L̃σ ⊗ Γ )Y(t). (5)

The exponential stability of system (5) is equivalent to the expo-
nential synchronization of network (3) (Wang &Wang, 2013). Cor-
respondingly, the bounded synchronization of network (2) can be
assessed by the ultimate boundedness of the solution Y(t) of sys-
tem (4).

Definition 1. Network (1) is said to achieve bounded synchroniza-
tion to the convergence domain M if ∀i, j = 1, . . . ,N , Xij(t) ap-
proaches to M, i.e., limt→∞ dist(Xij(t), M) = 0, where Xij(t) =

xi(t) − xj(t), dist(x∗, M) denotes the distance from a point x∗ to a
set M, that is, the smallest distance from x∗ to any point in M.
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