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a b s t r a c t

This paper examines the use of gradient basedmethods for extremum seeking control of possibly infinite-
dimensional dynamic nonlinear systems with general attractors within a periodic sampled-data frame-
work. First, discrete-time gradient descent method is considered and semi-global practical asymptotic
stability with respect to an ultimate bound is shown. Next, under the more complicated setting where
the sampled measurements of the plant’s output are corrupted by an additive noise, three basic stochas-
tic approximation methods are analysed; namely finite-difference, random directions, and simultaneous
perturbation. Semi-global convergence to an optimum with probability one is established. A tuning pa-
rameter within the sampled-data framework is the period of the synchronised sampler and hold device,
which is also the waiting time during which the system dynamics settle to within a controllable neigh-
bourhood of the steady-state input–output behaviour.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Extremum seeking locates via online computations an optimal
operating regime of the steady-state input–output map of a dy-
namical system without explicit knowledge of a model (Ariyur &
Krstić, 2003; Zhang &Ordóñez, 2011). Two categories of extremum
seeking controllers can be found in the literature. The first of which
is continuous-time controllers which exploit dither/excitation sig-
nals to probe the local behaviour of the system to be optimised and
continuously transition the system input to one that results in an
optimum. SeeAriyur andKrstić (2003), Krstić andWang (2000) and
Tan, Nešić, and Mareels (2006) for such methods that utilise peri-
odic dithers and Liu and Krstić (2012), Manzie and Krstić (2009)
for stochastic dithers. The convergence proofs of the former rely
on averaging and singular perturbation techniques (Khalil, 2002;
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Teel, Moreau, & Nešić, 2003), while the latter on stochastic averag-
ing (Liu & Krstić, 2012). On the contrary, discrete-time extremum
seeking controllers based on nonlinear programming methods are
examined in Teel andPopović (2001)within a sampled-data frame-
work. The convergence proof therein is established using Lyapunov
arguments.

An alternative and more direct proof for convergence to an
extremum in a sampled-data framework is given in Khong, Nešić,
Tan, and Manzie (2013) using trajectory-based techniques. In the
same paper, the sampled-data framework of extremum seeking is
further examined to accommodate global nonconvex optimisation
methods, such as those described in Strongin and Sergeyev (2000).
These results demonstrate that a wide range of optimisation
algorithms in the literature can be applied to extremum seeking
of dynamic plants. Making use of the results in Khong, Nešić,
Tan et al. (2013), deterministic gradient descent based extremum
seeking control is reviewed in this paper. Furthermore, stochastic
gradient descent (a.k.a. stochastic approximation) methods are
accommodated for extremum seeking in a way that is robust
against measurement errors.

Stochastic approximation methods (Kushner & Clark, 1978;
Kushner & Yin, 2003; Spall, 2003) are a family of well-studied it-
erative gradient-based optimisation algorithms that find applica-
tions in a broad range of areas, such as adaptive control and neural
networks (Bertsekas & Tsitsiklis, 1996). In contrast to the standard
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optimisation algorithms such as the steepest descent or Newton
methods (Boyd & Vandenberghe, 2004) which exploit direct gradi-
ent information, stochastic approximation methods operate based
on approximation to the gradient constructed from noisy mea-
surements of the objective/cost function. For the former, knowl-
edge of the underlying system input–output relationships are often
needed to calculate the gradient using for example, the chain rule.
This is not necessary for stochastic approximation, making it well-
suited for non-model based extremum seeking control.

This paper adapts within a periodic sampled-data frame-
work three discrete-time multivariate stochastic approximation
algorithms for extremum seeking control of dynamical systems
which can be of infinite dimension and contain general attrac-
tors. Namely, Kiefer–Wolfowitz–Blum’s Finite Difference Stochas-
tic Approximation (FDSA) (Blum, 1954; Kiefer &Wolfowitz, 1952),
Random Directions Stochastic Approximation (RDSA) (Kushner &
Clark, 1978), and Simultaneous Perturbation Stochastic Approxi-
mation (SPSA) (Spall, 1992, 2003). It is shown that there exists a
sufficiently long sampling period under which semi-global con-
vergence with probability one to an extremum of the steady-state
input–output relation can be achieved. This stands in comparison
with the gradient descent method based extremum seeking con-
trol under ideal noise-free sample measurements, for which semi-
global practical ultimately bounded asymptotic stability can be
established. Note that the existence of Lyapunov functions satis-
fying the conditions in Teel and Popović (2001) is not known for
the stochastic approximationmethods, and hence the convergence
results therein do not directly generalise to these methods.

A related work (Nusawardhana & Żak, 2004) considers an ex-
tremumseekingmethodbased on the SPSAwithin a different setup
(i.e. not sampled-data and has continuous plant output measure-
ments). There, the steady-state input–output objective function is
assumed to evaluate to a constant after some waiting time with
respect to a constant input, and the output measurements are
corrupted by noise. By contrast, this paper exploits the fact that
the state trajectory of an asymptotically stable dynamical system
converges to a neighbourhood of its steady-state value after the
system’s input is held constant for a pre-selectedwaiting time. Fur-
thermore, the sampled output value is assumed to be corrupted
by measurement noise. The SPSA method has also been applied to
optimisation of variable cam timing engine operation in Popović,
Janković, Magner, and Teel (2006), alongside several other opti-
misation algorithms. Azuma, Sakar, and Pappas (2012) adapts the
SPSA method for extreme source seeking of randomly switching
static distribution fields using a nonholonomic mobile robot. On a
different note, Stanković and Stipanović (2010) considers a related
problem of extremum seeking of static functions under noisymea-
surements using a discrete-time controller with sinusoidal dither
signals. These works differ from the setting of the paper, where
stochastic approximationmethods based extremum seeking of the
steady-state input–output maps of dynamical systems is analysed
within a sampled-data framework.

The paper has the following structure. First, the next section
states the properties of the nonlinear dynamical systems to which
gradient descent and stochastic optimisationmethods are applied.
Section 3 depicts the sampled-data framework inwhich extremum
seeking control is analysed. Subsequently, Section 4 examines the
gradient descentmethod for extremumseeking. Stochastic optimi-
sation methods are considered in Section 5. Illustrative simulation
examples are provided in Section 6, followed by some concluding
remarks in Section 7.

2. Dynamical systems

The class of nonlinear, possibly infinite-dimensional, systems
with general attractors considered in this paper is introduced in

this section. A function γ : R≥0 → R≥0 is of class-K (denoted
γ ∈ K) if it is continuous, strictly increasing, and γ (0) = 0.
If γ is also unbounded, then γ ∈ K∞. A continuous function
β : R≥0×R≥0 → R≥0 is of class-KL if for each fixed t ,β(·, t) ∈ K
and for each fixed s, β(s, ·) is decreasing to zero (Khalil, 2002). The
Euclidean norm is denoted ∥ · ∥2.

LetX be a Banach space whose norm is denoted ∥ ·∥. Given any
subset Y of X and a point x ∈ X, define the distance of x from Y
as ∥x∥Y := infa∈Y ∥x − a∥. Also let

Uϵ(Y) := {x ∈ X | ∥x∥Y < ϵ}.

Definition 1. Let the state of a time-invariant dynamical system
be represented by x : R≥0 → X, where X is a Banach space with
norm ∥ · ∥. The input to and output of the system are denoted,
respectively, by u : R≥0 → Rm and y : R≥0 → R. Given any
u ∈ Ω ⊂ Rm and x0 ∈ X, let x(·, x0, u) be the state of the dynam-
ical system starting at x0 with input u.

Parts of the following assumption are based on Teel and Popović
(2001, Assumption 1). Remarks on each of the assumptions follow.

Assumption 2. Given a system described in Definition 1 and an
open bounded set Ω ⊂ Rm, the following hold:

(i) There exists a function A mapping from Rm to subsets of X
such that for each constant u ∈ Ω , A(u) is a nonempty closed
set and a global attractor (Ruelle, 1989) which satisfies:
(a) Given any x0 ∈ X and ϵ > 0, there exists a sufficiently

large t > 0 such that x(t, x0, u) ∈ Uϵ(A(u));
(b) If x(t0, x0, u) ∈ A(u), then x(t, x0, u) ∈ A(u) for all t ≥ t0;
(c) There exists no proper subset of A(u) having the first two

properties above.
Furthermore,

sup
u∈Ω

sup
x∈A(u)

∥x∥ < ∞.

(ii) Given any∆ > 0, there exists a class-KL functionβ such that

∥x(t, x0, u)∥A(u) ≤ β(∥x0∥A(u), t)

for all t ≥ 0, u ∈ Ω , and ∥x0∥A(u) ≤ ∆.
(iii) There exists a locally Lipschitz function h : X → R such that

the system output

y(t) = h(x(t, x0, u)) ∀t ≥ 0

for any constant input u ∈ Ω and x0 ∈ X. Moreover, h(xa) =

h(xb) for every xa, xb ∈ A(u). Since A(u) is a global attractor
and h is locally Lipschitz, for any u ∈ Rm and x0 ∈ X,

Q (u) := lim
t→∞

h(x(t, x0, u))

= h

lim
t→∞

x(t, x0, u)


= h(xl), for some xl ∈ A(u)

is a well-defined steady-state input–output map.
(iv) Q is thrice continuously differentiable and has bounded

derivatives on Ω .
(v) The Jacobian ∇Q = 0 in a nonempty, compact set C ⊂ Rm,

i.e. Q achieves its minimum on C.

Remark 3. Property (i) of Assumption 2 states that for each con-
stant input to the system, there exists a corresponding set towhich
the state of the system converges. Property (ii) stipulates that the
state converges asymptotically stably. Property (iii) guarantees the
existence of a corresponding output and hence an input–output
map Q in steady state. The last two conditions are properties of Q
which are assumed for convergence of the approximate gradient
optimisation methods used in this paper, and are consistent with
corresponding assumptions in e.g. Spall (2003).
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