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a b s t r a c t

A novel adaptive frequency-domain system identification method for linear time-invariant systems is
proposed in this paper. It finds poles for discrete rational atoms with discrete frequency responses. The
theoretical foundation, including adaptive decomposition principle and decomposition convergence rate,
is established. The algorithm of the adaptive pursuit is also provided in this paper.
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1. Introduction

It is an important practical problem to model dynamical
models from measured data in many fields of science. For system
identification of stable linear time-invariant (LTI) systems, rational
model structures, such as ARX and ARMAX models, are natural
choices, because almost all systems can be described by rational
transfer functions (Ljung, 1999). However, direct estimation of
parameters of ARX, ARMAX model, etc. encounters nonlinear
optimal problems, which is not well solved in numerical aspects
so far.

In the last decades, there has been great attention in system
identification by using rational orthogonal systems, whose general
setting in the unit disc D = {z ∈ C : |z| < 1} is

Bk(z) = B{a1,...,ak}(z) ,


1 − |ak|2

1 − akz

k−1
l=1

z − al
1 − alz

, (1)

where all ak (k = 1, 2, . . .) are in the unit disc D and a means the
complex conjugate of a. This systemcorresponding to the sequence
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{ak} is dense in the Hardy space Hp(D) if and only if there holds
∞

k=1(1 − |ak|) = ∞. The system {Bk : k = 1, 2, . . .} is called a
Takenaka-Malmquist (TM) system. It has a long history of develop-
ment with applications in mathematics and engineering (Bultheel
& De Moor, 2000).

By using a TM system, a stable discrete LTI system G(z) is ap-
proximated byG(z) =

n
k=1 θkBk(z), where {θk}

N
k=1 is an n-tuple

of complex numbers to be determined and n is the order of the
model structure. There are an ample amount of publications by
such approach both in the time and the frequency domains. Differ-
ent choices of the poles result in different model structures: when
all ak are zero, it reduces to the classical FIRmodels; when all ak are
identicalwith a fixed real number, it gives rise to the Laguerremod-
els (Mäkilä, 1990, 1991;Wahlberg, 1999); andwhen all ak are equal
with a complex number, it relates to the Kautz models (Wahlberg,
1994; Wahlberg & Mäkilä, 1996). There are also studies on the
cases where all ak’s are distinct. This case relates with more gener-
alized rational orthogonal basis (GROB) models (Akçay & Ninness,
1998, 1999; Bultheel, Van gucht, & Van Barel, 2010; Heuberger,
Van den Hof, & Wahlberg, 2005; Heuberger et al., 2005; Ninness
& Gustafsson, 1997; Pintelon & Schoukens, 2012).

Although there are significant advantages by using the TM
system approach, finding appropriate selection of the poles in the
TM system is a very important issue to be solved. From the optimal
approximation point of view, we may not use the poles of the
systems as the poles of the TM functions. Recently, the so-called
adaptive Fourier decomposition (AFD), a novel strategy of using TM
systems, is proposed in Qian (2006); Qian and Wang (2011). The
novelty of AFD is that it undergoes a one-by-one selection of the
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poles ak: At each step it performs a maximal selection criterion. It
results in a significantly fast rational approximation. Based on AFD,
a two-step algorithm for frequency-domain system identification
is established in Mi and Qian (2012). In this two-step algorithm,
one first constructs a Hardy H2 function by using a discretized
Cauchy integral formula and then produces approximations by
AFD. This program is subsequently developed in Mi and Qian
(2014) and Mi, Qian, and Wan (2012).

The present paper proposes an algorithm to select poles based
on the measured data. In such approach we do not assume there
exists a system function. We note that, in AFD, the parameterized

and normalized Szegö kernels ea(z) =

√
1−|a|2

1−az , a ∈ D, play
a key role. In fact, any infinite orthogonal rational basis {Bj :

j = 1, 2, . . .} can be obtained through the Gram–Schmidt process
applied to a set of functions consisting of eaj and their derivatives.

What is done in this paper is to use samples of normalized
parameterized Szegö kernels in the finite sequence form to replace
normalized parameterized Szegö kernels as functions. The purpose
is to construct an AFD-like algorithm but with the maximal
selection criterion in terms of the measured data. The aspect of
using Szegö kernels makes it like AFD, while the aspect of being
lack of algebraic structure makes it more like matching pursuit.
The proposed algorithm may be considered as discretization of
AFD, as if DFT in the Fourier series context (see Mi & Qian, 2012;
Qian & Wang, 2011). In Ward and Partington (1995, 1996), the
authors studied the discrete atoms corresponding to Laguerre
models. The collocation matrix corresponding to Laguerre models
is nonsingular, since it is a special case of Vandermonde matrix.
In the present paper, we will show that the collocation matrix
corresponding to a class of Szegö kernels is nonsingular, so is the
one corresponding to a class of Blaschke product.

Our presented algorithm contains two steps: choosing poles in
discrete system and calculating the weight. About calculation of
the weight, there are two approaches to realize: greedy algorithm
and least square (LS) method. Throughout the paper, the term
proposed method with greedy weight (PMGW ) means that we
use the maximal selection criterion to choose poles and use
greedy algorithm to calculate the weight. Similarly, the term
proposed method with LS weight (PMLSW ) stands for the algorithm
combining the maximal selection criterion to choose poles with
using LS method to get the weight.

In numerical implementation, we mainly compare the two
proposed methods with the Laguerre models and the subspace
method. The results show that the two proposed methods per-
form very well for the example studied here. Particularly, PMLSW
is better than the other methods, while frequency-domain mea-
surements are corrupted by noise.

The writing plan is as follows. Section 2 is the problem
setting. Section 3 is devoted to construction of the discrete Szegö
system as well as exploration of its properties. We prove that the
collocation matrix is nonsingular and the system forms a frame
(even Riesz basis) of the vector space CN . Section 4 contributes
to designing and analyzing the identification algorithm for the
adaptive representation. Since the discrete Szegö system contains
unknown parameters, the benefit is the flexibility and adaptivity
for the presentation of practical data. The main algorithm is based
on the maximum selection criterion in greedy algorithm with
minor modification. Section 5 is focused on PMGW and PMLSW . In
Section 6, some numerical results are given. The last section draws
conclusions.

2. Problem setting

In this paper it is assumed that a set of frequency-domain
measurements y = {yk}Nk=1 is available. These measurements are
obtained from a single input, single output (SISO) discrete stable

LTI system f (z) in H2(D) with real-valued impulse responses. In
general, f (z) is a rational function of real-valued coefficients with
its poles being outside the closure of the unit disc D.

It is then assumed that the structure of measurements y is set
up as

yk = f (ejωk) + vk (k = 1, 2, . . . ,N), (2)

where the samples {ωk : k = 1, . . . ,N} can be any distinct
points in the interval [0, 2π). In the equidistant case, it takes ωk =
2π(k−1)

N . The positive integer N is assumed to be even. In this paper,
the noise (error sequence) {vk} is a stochastic model with zero
mean and variance σ 2 < ∞.

Let a1, . . . , an be distinguished points in D, Xn = span{B1, . . . ,
Bn} = span{ea1(z), . . . , ean(z)}, where the orthonormal system
{Bk}

n
k=1 is defined by (1). The identification problem is as follows.

Frequency-domain identification problem: Given a set of frequency-
domain measurements y = {yk}Nk=1 for G ∈ H2. Find an optimal
approximationGn(z) =

n
k=1 θkeak(z) by determining {ak}nk=1 ∈ D

and coefficients {θk}
n
k=1.

To give a solution of this problem, we start with reviewing
relevant properties of the discrete Szegö system.

3. Discrete system based on Szegö kernel

Set the column vector Ea in CN by

Ea =


1 − |a|2

1 − āeiω1
, . . . ,


1 − |a|2

1 − āeiωN

T

. (3)

For a parameter sequence {aj ∈ D : j = 1, 2, . . .} with a1 = 0,
we can define, with a bit of abuse of notation, the discrete system
{Ek : k ∈ Z} and the unit system {ek : k ∈ Z} in CN , respectively,
by

E1 = (1, . . . , 1)T , Ek = Eak , k ∈ N (4)

and

e1 =
1

√
N

(1, . . . , 1)T , ek =
Eak

h(ak;w)
, k ∈ N, (5)

where the sample vectorw = (ω1, . . . , ωN), and, h(·;w) : C → R
is the complex-variable and real-valued function defined by

h(a;w) =


N

s=1

1 − |a|2

|1 − āeiωs |2

 1
2

. (6)

Define the collocation matrix B by

B = (e1, e1, . . . , eN) . (7)

The main theorem of this section is given below.

Theorem 1. Suppose that samples {ωj : j = 1, . . . ,N} satisfy
the condition ei(ωj−ωk) ≠ 1 when j ≠ k, j, k ∈ {1, . . . ,N}, and
aj, j = 1, . . . ,N, are distinct points in D (a1 = 0). Then, the matrix B
defined in (7) is nonsingular.

We offer an outline of the proof of Theorem 1. Firstly, by making
use of the fundamental theorem of algebra, we prove that, for any
nonzero vector } = (h1, . . . , hN) ∈ CN , there exists at least one
point b ∈ D such that |⟨}, Eb⟩| > 0. Secondly, we prove the
following fact by contradiction:

E = (E1, E2, . . . , EN) (8)
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