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a b s t r a c t

This paper is concerned with the fault detection filter design problem for linear time-invariant systems
subject to disturbance and possible faults. To make a tradeoff between fault sensitivity and disturbance
sensitivity, frameworks such as H−/H∞, H2/H∞, and H∞/H∞ are considered. It is shown that
for H−/H∞ and H∞/H∞ frameworks, all optimal fault detection filters can be characterized by an
envelope besieged by the special solutions serving as upper and lower bounds. Furthermore, the explicit
parametrization is given in terms of a free contractive system/parameter. This free parameter provides
freedom to emphasize fault and disturbance sensitivities at different frequency ranges, which can be used
to construct newoptimal fault detection filter. The results are also extended to the optimization over finite
frequency range, for which the upper and/or lower bound of the optimal solution set may not be rational.
On the other hand, it is shown that the solution set of H2/H∞ problem is unique up to square inner
system. Finally, examples are given to illustrate the results.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Model-based fault diagnosis has attracted a great of interest in
the last several decades (Chen & Patton, 1999; Ding, 2008; Frank &
Ding, 1997). As themost critical part of fault diagnosis, fault detec-
tion is concerned with designing a filter called residual generator
that generates residual signal to predict the occurrence of faults
(Chen & Patton, 1999). The fault detection designs based on opti-
mization have been proposed in the last twenty years (Casavola,
Famularo, & Franze, 2005; Henry & Zolghadri, 2005; Khosrowjerdi,
Nikoukhah, & Safari-Shad, 2005; Rank & Niemann, 1999). Specif-
ically, in order to make this trade-off of two objectives: robust-
ness to disturbance and sensitivity to fault, many design criteria
and the corresponding techniques have been proposed (Ding, Jein-
sch, Frank, & Ding, 2000; Hou & Patton, 1996; Jaimoukha, Li, & Pa-
pakos, 2006; Li & Liu, 2013; Li, Mazars, & Jaimoukha, 2006; Li &
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Zhou, 2009b; Liu, Wang, & Yang, 2005; Wang, Lam, Ding, & Zhong,
2005; Wang, Yang, & Liu, 2007).

Several criteria such as H−/H∞, H2/H∞ and H∞/H∞ prob-
lems have been employed in fault detection design recently. In Liu
and Zhou (2007, 2008), a unified optimal filter of an observer form
is obtained. The sameunified solution has also beenderived inDing
et al. (2000) for the different objective that maximizes the ratio
of fault sensitivity and disturbance sensitivity, such as H−

H∞
prob-

lem formulation. Furthermore, in Li and Zhou (2009a) and Li, Mou,
and Zhou (2010). The result has been extended the result to linear
time-varying systems based on the definitions and problem formu-
lations in time domain. With the matrix factorization technique, a
solution for H∞/H− framework was proposed in Jaimoukha et al.
(2006), where the disturbance effect is minimized in terms of H∞

norm, while the minimal fault sensitivity is constrained in terms
of H− index. However, several limitations and unanswered ques-
tions exist in those works. In N. Liu and K. Zhou’s work (Liu & Zhou,
2007), only one ‘unique’ solution is given to the fault detection fil-
ter for all three problems. Similarly, the same ‘unique’ solution is
given in S. X. Ding, T. Jeinsch and et al.’s work (Ding et al., 2000) for
different frameworks such as H−

H∞
(Jaimoukha et al., 2006). Most

importantly, it is not easy to apply these filter designs to strictly
proper systems. It also fails to consider fault and disturbance sen-
sitivities at different frequency ranges. On the other hand, the fault
detection designs via linear matrix inequality (LMI), always give
merely one solution (Wang et al., 2007).
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This work is to investigate the solution sets of the above prob-
lem frameworks and explore a method to construct new solutions.
Based on a novel comparison relation for stable transfer matrices,
we show that the optimal solutions of H−/H∞, can be character-
ized by the upper bound and lower bound. In particular, the spe-
cial solution given in Ding et al. (2000) and Liu and Zhou (2008)
is only the upper bound. Furthermore, we also find that all solu-
tions can be parametrized by a free contractive parameter/system
in terms of combination of lower bound and upper bound. This free
parameter provides freedom to construct other optimal solutions
from the above two special solutions. By designing U properly,
i.e., of a low-pass filter form, we can emphasize fault and distur-
bance sensitivities at different frequency ranges. The results have
also been extended to finite frequency range, for which the upper
bound and/or lower bound are not necessarily rational. The same
parametrization is derived for H∞/H∞ problem which the lower
boundmay not be rational. In addition, we also show that the solu-
tions of H2/H∞ problem are unique up to square inner systems.

2. Notations and definitions

The set of m × n real (complex) matrices is denoted as Rm×n

(Cm×n). For a matrix A ∈ Cm×n, we use A∗ to denote its conjugate
transpose and A′ to denote its transpose. For a matrix A ∈ Cm×n,
we use σ̄ (A) to denote the largest singular value of A and σ(A) to
denote the smallest singular value of A if m ≥ n. A ∈ Rm×n is
called tall (wide, or square) matrix if m > n (m < n, or m = n).
We denote L n

2 the set of all real energy bounded signals with
dimension n. We use RL m×n

∞
to denote the set of all m × n real

rational proper transfer matrices with no poles on the imaginary
axis. The superscripts for dimensionswill usually be droppedwhen
they are either not important or clear from context. RH ∞ is a
subset of RL ∞ with all stable transfer matrices. Similarly RH 2 is
the set of all real rational strictly proper stable transfer matrices.
A state space realization of a transfer matrix G(s) is denoted as

G(s) =


A B
C D


such that G(s) = C(sI − A)−1B + D. G∼(s) :=

G′(−s) is the para-Hermitian complex conjugate transpose of G. G
is called inner if G ∈ RH ∞ and G∼G = I . G is called co-inner
if G ∈ RH ∞ and GG∼

= I . G ∈ RH ∞ is called outer if all its
transmission zeros are stable (Zhou, Doyle, & Glover, 1996). For
G ∈ RH 2 we define theH norm of G as (Zhou et al., 1996) ∥G∥2 :=

1
2π


∞

−∞
Trace{G∼(jω)G(jω)}dω. For G ∈ RH ∞ we define the

H∞ norm of G as (Zhou et al., 1996) ∥G∥∞ := supω∈R σ̄ (G(jω)).
For G ∈ RH ∞ the H− index of G is defined as (Frank & Ding,
1997) ∥G∥− := infω∈R σ (G (jω)). Two transfer matrices G and H
are called equivalent up to square inner system if there exists a
square inner system U such that UG = H . It is denoted by G ≡ H .

Definition 1. For two transfer matrices G and H in RH m×n
∞

, we
denote G E H (G D H) if G∼(jω)G(jω) ≤ H∼(jω)H(jω)
(G∼(jω)G(jω) ≥ H∼(jω)H(jω)) holds for all ω ∈ R ∪ ∞.

3. Plant and problem formulations

Consider plant:
y = Guu + Gdd + Gf f (1)
where x(t) ∈ Rn is the state vector, y(t) ∈ Rny is the output
measurement, u(t) ∈ Rnu represents the control input, d(t) ∈ Rnd

represents the unknown/uncertain disturbance and measurement
noise, and f (t) ∈ Rnf denotes the process, sensor or actuator
fault vector. Gu, Gd, and Gf are ny × nu, ny × nd and ny × nf
transfer matrices respectively and their state-space realizations

are


Gu Gd Gf


=


A B Bd Bf
C D Dd Df


. We make the

following assumptions. 1. (C, A) is detectable. 2. nd ≥ ny = nf .

3.

A − jωI Bd

C Dd


has full row rank for all ω ∈ R. Or, equivalently,

the transfer matrix Gd has no transmission zero on the imaginary
axis. 4. Dd has full row rank. 5.


A − jωI Bf

C Df


has full row rank for all

ω ∈ R. Or, equivalently, the transfermatrixGf has no transmission
zero on the imaginary axis. 6. Df has full column rank.

Assumption 1 is a standard assumption for all fault detection
problems. It will be seen later that Assumptions 3 and 4 are used to
derive the stable and rational upper bound of the optimal solution
set. With the removal of the two assumptions, the upper bound
may be not stable as it may have pole on imaginary axis. However,
this upper bound is a strictly tight upper bound, since we can use
optimal stable transfer matrix to approximate it with arbitrary
accuracy. In addition, our derived solution set still works and can
be used to derive other solutions.

It will be seen later that Assumptions 5 and 6 are necessary
to derive the stable and rational lower bound of optimal solution
set. Actually, with removal of the two assumptions, the H− index
in infinite frequency range representing the weakest sensitivity
is always zero. In other words, there always exist un-detectable
faults. However, fault always happens in finite frequency range,
and thus the two assumptions can be partially removed. Specifi-
cally, Assumptions 5 and 6 can be relaxed to be that


A − jωI Bf

C Df


has full row rank for all ω in the frequency range that fault occurs,
i.e., [0, ωf ]. Obviously, it cannot be completely removed, otherwise,
some fault may be undetectable.

Assumption 2 is the case we are investigated in this paper in
terms of system dimensions. First of all, it is necessary to have
ny = nf in sensor fault detection as faults could happen in each
output channel. Even if not, we have two cases, ny > nf and
ny < nf . For the former we can always choose proper outputs to
make ny = nf . For the latter, theoretically, some fault cannot be
detected, since it always holds that ∥QNf ∥− = 0. Thus, it makes no
sense to characterize all solutions.

Second, we argue that ny ≤ nd is reasonable since noises always
exist in every output channels in practice and thus we can treat
them as extra disturbance input (see Liu & Zhou, 2007). Even for
the case nd ≤ nf , it is still possible to construct a square system
Ĝf =


Gf Gc


whereGc is an extra system so that ∥Ĝf ∥− ≈ ∥Gf ∥−.

Thus, we can use Ĝf to replace Gf in the derivation of lower bound.
The essential of this augment is to introduce a fictitious fault fc
corresponding to Gc . To set Gc as large as possible, fc may have very
significant sensitivity and thusmakes negligible effect toH− index.

With Assumption 1, we have a left coprime factorization as
Gu Gd Gf


= M−1


Nu Nd Nf


. As in Frank and Ding (1997)

that the fault detection filter F can take the following general form
r = Q (My − Nuu) =: F


y
u


where r is the residual vector for

detection, Q ∈ RH
ny×ny
∞ is a free stable transfer matrix to be

designed. By computation, we have r = QNdd + QNf f . It can be
seen that fault detection filter design becomes to designQ . Wewill
call Q instead of F as optimal filter or solution.

To make a tradeoff between fault sensitivity and disturbance
sensitivity, we consider the following problem formulations (Liu &
Zhou, 2007) (∥ · ∥i represents ∥ · ∥−, ∥ · ∥2 or ∥ · ∥∞).

Problem 1 (Hi/H∞ Problem). Let a system be described by Eq. (1)
and let β > 0 be a given disturbance rejection level. Find a stable
transfer matrix Q ∈ RH

ny×ny
∞ such that ∥Grd∥∞ ≤ β and

Grf


−

is maximized, i.e., max
Q∈RH

ny×ny
∞

QNf

i : ∥QNd∥∞ ≤ β


.

4. Parametrization for H−/H∞ framework

By Zhou et al. (1996), with Assumptions 1, 2, 3 and 4, we have
the co-inner–outer factorization for Nd, i.e., Nd = VdId where Id
is a co-inner. With Assumptions 1, 2, 5 and 6, we have the co-
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