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a b s t r a c t

This paper proposes an optimal control strategy for a discrete-time linear system constrained to satisfy a
temporal logic specification over a set of linear predicates in its state variables. The cost is a quadratic
function that penalizes the distance from desired state and control trajectories. The specification is a
formula of syntactically co-safe Linear Temporal Logic (scLTL), which can be satisfied in finite time. To
incorporate dynamic environments, it is assumed that the reference trajectories are only available over
a finite horizon and a model predictive control (MPC) approach is employed. The MPC controller solves
a set of convex optimization problems guided by the specification and subject to progress constraints.
The constraints ensure that progress is made towards the satisfaction of the formula with guaranteed
satisfaction by the closed-loop trajectory. The algorithms proposed in this paper were implemented as a
software package that is available for download. Illustrative case studies are included.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been an increasing interest in for-
mal synthesis of control strategies for dynamical systems (Bhatia,
Kavraki, & Vardi, 2010; Gazit, Fainekos, & Pappas, 2007; Girard,
2010; Aydin Gol, Lazar, & Belta, 2014; Sloth & Wisniewski, 2013;
Tabuada & Pappas, 2003;Wongpiromsarn, Topcu, &Murray, 2009;
Yordanov, Tumova, Belta, Cerna, & Barnat, 2012). Unlike ‘‘classical’’
control problems, in which the specifications are stability or close-
ness to a reference point or trajectory possibly coupledwith safety,
the aboveworks allow for richer specifications that translate to for-
mulas of temporal logics such as Linear Temporal Logic (LTL) (Baier
& Katoen, 2008) and fragments of LTL.

We consider synthesis of optimal control strategies from tem-
poral logic specifications. While some results exist for finite sys-
tems (Ding, Lazar, & Belta, 2012; Ding, Smith, Belta, & Rus, 2011),
this problem is largely open for systems with infinitely many
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states. We focus on MPC of discrete-time linear systems subject
to scLTL formulas over linear predicates in the state variables. The
cost is a quadratic function that penalizes the distance between the
actual and desired state and control trajectories over a finite time
horizon. The goal is to find a control strategy such that the trajec-
tory of the closed-loop system originating from a given initial state
satisfies the formula and minimizes the cost. The syntactically co-
safe fragment of LTL is rich enough to express a wide spectrum of
finite-time properties of dynamical systems, e.g., ‘‘Go to A or B and
avoid C for all times before reaching T . Do not go to D unless E was
visited before’’.

Our approach consists of two main steps. First, by using the
framework developed in Aydin Gol et al. (2014), we perform an
iterative partitioning of the state space guided by an automaton
enforcing the satisfaction of the scLTL formula. Second, we design
an MPC controller over the automaton and the state space of
the system. Essentially, we use the automaton to translate the
formula into a type of constraint that can be embedded into the
MPC problem. The proposed MPC controller produces an optimal
control sequence with respect to the available reference trajectory
by solving a set of quadratic programs (QPs). The first control
is applied and the process is repeated until a final state of the
automaton is reached. The constraints of the optimization problem
guarantee that the produced trajectory follows an automaton path
whilemaking progress towards a final state. Themain contribution
of this work is the proposed specification-guided MPC framework,
in which the satisfaction of the specification by the closed-loop
trajectory is guaranteed while the cost over the available finite
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horizon reference trajectories is minimized at each time step. The
framework was implemented as a software package, which is
downloadable from hyness.bu.edu/software.

A preliminary version of this work appeared in conference
proceedings Aydin Gol and Lazar (2013), where we defined a
Lyapunov-type function over the state spaces of the dynamical
system and the automaton obtained from the first step, i.e., the
automaton refinement step. The function was based on the
controllers considered during the refinement step, andwas used to
enforce the progress towards an accepting state of the automaton
in the MPC problem. Here, we expand Aydin Gol and Lazar (2013)
by generalizing this idea and introducing a class of Lyapunov-type
functions, which we call potential functions. The new potential
functions do not necessarily depend on the previously designed
controllers. Moreover, we relax the progress constraint, which
together with the new potential functions allow us to reduce the
cost.

2. Notation and preliminaries

For a set S , Co(S ), #S , and 2S stand for its convex hull,
cardinality, and power set, respectively. We use R, R+, Z, and Z+

to denote the sets of real numbers, non-negative reals, integer
numbers, and non-negative integers. For m, n ∈ Z+, with m, n ≥

1, we use Rn and Rm×n to denote the set of column vectors and
matrices with n andm× n real entries, respectively. A polyhedron
(polyhedral set) in Rn is the intersection of a finite number of open
and/or closed half-spaces. A polytope is a compact polyhedron.We
use V (P) to denote the set of vertices of a polytope P .

A discrete-time linear control system is defined as

xk+1 = Axk + Buk, xk ∈ X, uk ∈ U, (1)

where A ∈ Rn×n and B ∈ Rn×m describe the system dynamics,
X ⊂ Rn and U ⊂ Rm are polyhedral sets, and xk ∈ X and uk ∈ U
are the state and the applied control at time k ∈ Z+, respectively.
An atomic proposition p defined as a linear inequality inRn induces
a half-space

[p] := {x ∈ Rn
| c⊤x + d ≤ 0}, ci ∈ Rn, d ∈ R, (2)

i.e., [p] ⊂ Rn is the set of states that satisfy p.
The control specifications are given as formulas of syntactically

co-safe linear temporal logic (scLTL) (Kupferman & Vardi, 2001)
over linear predicates. Roughly, an scLTL formula is built up
from a set of atomic propositions P , standard Boolean operators:
¬ (negation), ∨ (disjunction), ∧ (conjunction), and temporal
operators: ⃝ (next), U (until) and ♦ (eventually). The semantics
of LTL formulas are given over infinite words σ = σ0σ1 . . . where
σi ∈ 2P for all i. Awordσ satisfies an scLTL formulaφ, if the formula
is true at the first position of the word, i.e., σ0. Intuitively, ⃝ φ1 is
true if φ1 is true at the next position of the word, φ1 U φ2 is true if
φ2 eventually becomes true and φ1 is true until this happens, and
♦ φ1 is true if φ1 becomes true at some future position in the word.

Given a set of atomic propositions P = {pi}i=0,...,l in the form
of linear predicates (see (2)), a trajectory x0x1 . . . of system (1)
produces a word P0P1 . . . where Pi ⊆ P is the set of atomic
propositions satisfied by xi, i.e., Pi = {pj | xi ∈ [pj]}. scLTL formulas
over the set of predicates P can therefore be interpreted over such
words. A system trajectory satisfies an scLTL formula over P if
the word produced by the trajectory satisfies the corresponding
formula.

In AydinGol et al. (2014),we considered the problemof control-
ling discrete-time linear systems from scLTL specifications, and de-
veloped a language-guided procedure for the automatic computa-
tion of sets of initial states and feedback controllers such that all the
resulting trajectories of the closed-loop system satisfy the formula.
The procedure involved construction of a finite state automaton

(FSA) that accepts all words satisfying the scLTL formula (Kupfer-
man&Vardi, 2001), and taking the dual of the FSA by interchanging
its states and transitions. The states of the dual automaton were
associated with the regions of the linear system through linear
predicates, and the transitions induced region to region controller
synthesis problems. The final step was the refinement of the dual
automaton until feasible transition controllers were obtained.

Definition 2.1. The dual automaton obtained from the refinement
algorithm given in Aydin Gol et al. (2014) is denoted by

A D
= (Q D, →D, 2P , τD,Q D

0 , FD), (3)

where Q D is a finite set of states, →
D

⊆ Q D
× Q D is a set of

transitions, 2P is a set of symbols, τD
: Q D

→ 2P is an output
function, Q D

0 ⊆ Q D is a set of initial states and FD
⊆ Q D is a set of

final states. The region of a state q ∈ Q D is denoted by Pq ⊂ X.

The transitions of the dual automaton are labeledwith a weight
function w : →

D
→ Z+ such that for a transition (q, q′) ∈ →

D

the transition controller synthesized during the refinement step
guarantees that all trajectories originating form Pq reaches Pq′

withinw((q, q′)) stepswhile remaining inPq until they reachPq′ .
An accepting run rA D of a dual automaton is a sequence of states
rA D = q0 . . . qd such that q0 ∈ Q D

0 , qd ∈ FD and (qi, qi+1) ∈ →
D

for all i = 0, . . . , d − 1. An accepting run rA D produces a word
σ = σ0 . . . σd over 2P such that τ(qi) = σi, for all i = 0, . . . , d. The
construction of the dual automaton guarantees that τD(q) = {pi |

x1 ∈ [pi]} = {pj | x2 ∈ [pj]} for any x1, x2 ∈ Pq, q ∈ Q D. Therefore,
any system trajectory x0 . . . xd that follows a sequence of regions
Pq0 . . . Pqd , i.e., xi ∈ Pqi , defined by an accepting automaton
run rA D = q0 . . . qd satisfies the specification. Furthermore, any
satisfying trajectory of system (1) follows a sequence of polyhedral
sets defined by an accepting run of A D.

Assumption 2.2. For any q0 ∈ Q D there exists an automaton path
q0 . . . qd, d ∈ Z+ such thatw(qi, qi+1) < ∞ for all i = 0, . . . , d−1
and qd ∈ FD.

3. Problem formulation

Consider a system as defined in (1), and a set of atomic propo-
sitions P = {pi}i=0,...,l, l ≥ 1, given as linear inequalities over
the system states. Let xr0x

r
1 . . . and ur

0u
r
1 . . . denote a reference

trajectory and a reference control sequence, respectively. We as-
sume that, for some N , at time k the reference trajectory of length
N + 1, xrk . . . xrk+N , and the reference control sequence of length N ,
ur
k . . . ur

k+N−1, are known. At time k ∈ Z+, the cost of a finite tra-
jectory xk . . . xk+N originating at xk and generated by the control
sequence uk = uk . . . uk+N−1 is defined with respect to the avail-
able reference trajectory and control sequence as follows:

C(xk,uk) = (xk+N − xrk+N)⊤LN(xk+N − xrk+N)

+

N−1
i=0


(xk+i − xrk+i)

⊤L(xk+i − xrk+i)

+ (uk+i − ur
k+i)

⊤R(uk+i − ur
k+i)


. (4)

L, LN ∈ Rn×n and R ∈ Rm×m are positive definite matrices.

Problem 3.1. Given an scLTL formula Φ over a set of linear
predicates P , a dynamical system as defined in (1), and an initial
state x0 ∈ X, find a feedback control strategy such that the closed-
loop trajectory originating at x0 satisfies Φ while minimizing the
cost (4).
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