Automatica 56 (2015) 86-92

journal homepage: www.elsevier.com/locate/automatica

Contents lists available at ScienceDirect

automatica

Automatica

Brief paper

Containment control for a social network with state-dependent

connectivity”

@ CrossMark

Zhen Kan?, Justin R. Klotz?, Eduardo L. Pasiliao Jr.?, Warren E. Dixon?

2 Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, USA
b Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL 32542, USA

ARTICLE INFO

ABSTRACT

Article history:

Received 7 December 2012
Received in revised form

5 December 2014

Accepted 12 March 2015
Available online 15 April 2015

Keywords:

Social network
Fractional-order dynamics
Containment control
Network connectivity

Social interactions influence our thoughts, opinions and actions. In this paper, social interactions are
studied within a group of individuals composed of influential social leaders and followers. Each person
is assumed to maintain a social state, which can be an emotional state or an opinion. Followers update
their social states based on the states of local neighbors, while social leaders maintain a constant desired
state. Social interactions are modeled as a general directed graph where each directed edge represents an
influence from one person to another. Motivated by the non-local property of fractional-order systems,
the social response of individuals in the network are modeled by fractional-order dynamics whose states
depend on influences from local neighbors and past experiences. A decentralized influence method is then
developed to maintain existing social influence between individuals (i.e., without isolating peers in the
group) and to influence the social group to a common desired state (i.e., within a convex hull spanned
by social leaders). Mittag-Leffler stability methods are used to prove the asymptotic convergence of the

networked fractional-order system.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Social interactions influence our emotions, opinions, and be-
haviors. Technological advances in social media provide more
rapid, convenient, and widespread communication among individ-
uals, which leads to a more dynamic interaction and influence.
For example, recent riots (Bright, 2011) and ultimately revolu-
tion (Gustin, 2011), have been facilitated through social media
technologies such as Facebook, Twitter, YouTube, and BlackBerry
Messaging (BBM). Marketing agencies also have begun to take
advantage of influence due to social media, especially through
the internet. The company Razorfish, for example, works with
online peer influencers to transform them into brand advo-
cates through the execution of Social Influence Marketing (SIM)
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Strategy, which aims to influence marketing primarily through
online, small groups, peer pressure, reciprocity or flattery (Singh,
20009).

Various dynamic models have been developed to study the indi-
vidual’s social behavior, such as the efforts to model the emotional
response of different individuals (Ghosh, 2010; Sprott, 2004, 2005).
In Sprott (2004), the time-variation of emotions between individ-
uals involved in a romantic relationship is described by a dynamic
model of love, and in Sprott (2005) a set of differential equations
are developed to model the individual’s happiness in response to
exogenous influences. Fractional-order differential equations are
a generalization of integer-order differential equations, and they
exhibit a non-local integration property where the next state of a
system not only depends upon its current state but also upon its
historical states starting from the initial time (Monje, Chen, Vina-
gre, Xue, & Feliu, 2010). Motivated by this property, many re-
searchers have explored the use of fractional-order systems as a
model for various phenomena in natural and engineered systems.
For instance, the works in Sprott (2004, 2005) were revisited in Ah-
mad and El-Khazali (2007) and Song, Xu, and Yang (2010), where
the models of love and happiness were generalized to fractional-
order dynamics by taking into account the fact that a person’s emo-
tional response is influenced by past experiences and memories.
However, the models developed in Ahmad and El-Khazali (2007),
Sprott (2004, 2005) and Song et al. (2010) only focus on an individ-
ual’s emotional response, without considering the interaction with
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social peers where rapid and widespread influences from social
peers can prevail. Other results, such as Blondel, Hendrickx, and
Tsitsiklis (2009) and Cucker and Smale (2007) and the reference
therein, studied the interaction of social peers using an opinion dy-
namics model, and derived conditions under which consensus can
be reached. However, agents in Blondel et al. (2009) and Cucker and
Smale (2007) only update their opinions by averaging the neigh-
boring agent opinions, without taking into account the influence
of agents’ past experience and memory on their decision making.

When making a decision or forming an opinion, individuals
tend to communicate with parents, friends, or colleagues and
take advice from social peers. Social connections such as friend-
ship, kinship, and other relationships can influence the decisions
they make. Some individuals (e.g., parents, teachers, mentors,
and celebrities) may exhibit more powerful influences in others’
decision making, and the underlying social network enables the
influence to pass from influential individuals to receptive individ-
uals. Containment control is a particular class of consensus prob-
lems (see Olfati-Saber, Fax, & Murray, 2007 and Ren, Beard, &
Atkins, 2007 for a comprehensive literature review for consensus
problems), in which follower agents are under the influence of
leaders through local information exchange in a leader-follower
network. In results such as Cao and Ren (2009), Cao, Ren, and
Egerstedt (2012), Mei, Ren, and Ma (2012) and Notarstefano,
Egerstedt, and Haque (2011), distributed containment control al-
gorithms are developed for agents with integer-order dynamics
where the group of followers is driven to a convex hull spanned
by multiple leaders’ states under an undirected, directed or switch-
ing topology. This paper examines how such methods can be lever-
aged to manipulate a social network. This work specifically aims to
investigate how peer pressure from social leaders affects consen-
sus beliefs (e.g., opinions, emotional states, purchasing decisions,
political affiliation, etc.) within a social network, and how an in-
teraction algorithm can be developed such that the group social
behavior can be driven to a desired end (i.e., a convex hull spanned
by the leaders’ states).

By modeling human emotional response as a fractional-order
system, the influence of a person’s emotions within a social net-
work is studied, and emotion synchronization for a group of in-
dividuals is achieved in our recent preliminary work (Kan, Klotz,
Pasiliao, & Dixon, 2013; Kan, Shea, & Dixon, 2012). However, the
emotion synchronization behavior in Kan, Shea et al. (2012) only
considers an undirected network structure: the one-sided influ-
ence of social leaders is not considered. This work aims to inves-
tigate how the social beliefs (e.g., emotional response, opinions,
etc.) of a group of individuals evolve under the influence of so-
cial leaders. Similar to Kan, Shea et al. (2012), the social group is
modeled as a networked fractional-order system, where the so-
cial response of each individual is described by fractional-order
dynamics whose states depend on influences from social peers, as
well as past experiences. Since social leaders are considered, the
undirected network topology in Kan, Shea et al. (2012) is extended
to a directed graph, where the directed edges indicate the influ-
ence capability between two individuals (e.g., the leaders can in-
fluence the followers’ state, but not vice versa). The goal in this
work is to develop a decentralized influence algorithm where in-
dividuals within a social group update their beliefs by considering
beliefs from social peers and the social group achieves a desired
common belief (i.e., the social state of the group converges to a
convex hull spanned by social leaders). Since an individual gen-
erally only considers others’ beliefs as reasonable if their beliefs
differ by less than a threshold, social difference is introduced to
measure the closeness of the beliefs between individuals. In con-
trast to the constant weights considered in Cao and Ren (2009), Mei
etal.(2012)and Notarstefano et al. (2011), the social difference is a
time-varying weight which depends on individuals’ current states.

Moreover, instead of assuming network connectivity (i.e., there al-
ways exists a path of influence between any two agents) such as
in Cao and Ren (2009), Mei et al. (2012) and Notarstefano et al.
(2011), one main challenge here is to influence the followers’ so-
cial states to a desired end by maintaining consistent interaction
among social peers and influential leaders (i.e., individuals can al-
ways be influenced by social peers, instead of being isolated from
the social group) within a time-varying graph. When modeled as a
networked fractional-order system, the development of a contain-
ment algorithm can be more challenging compared to the integer-
order dynamics in Cao and Ren (2009), Cao et al. (2012), Mei et al.
(2012) and Notarstefano et al. (2011), which can be considered as a
particular case of generalized fractional-order dynamics. The first
apparent result that investigated the coordination of networked
fractional systems is Cao, Li, Ren, and Chen (2010). However, only
linear time-invariant systems are considered in Cao et al. (2010),
where the interaction between agents is modeled as a link with a
constant weight. Due to the time-varying weights considered here,
previous stability analysis tools such as examining the eigenval-
ues of linear time-invariant fractional-order systems (cf. Cao et al.,
2010, Chen, Ahn, & Podlubny, 2006 and Song et al., 2010) are not
applicable to the time-varying networked fractional-order system
in this work. To address these challenges, a decentralized influence
function is developed to achieve containment control for the net-
worked fractional-order systems while preserving continued so-
cial interaction among individuals. Asymptotic convergence of the
social states to the convex hull spanned by leaders’ states in the
social network is then analyzed via LaSalle’s invariance theorem
(Khalil, 2002), convex properties (Boyd & Vandenberghe, 2004) and
a Mittag-Leffler stability (Li, Chen, & Podlubny, 2009) approach.

2. Preliminaries

Consider a Fractional Order System (FOS)
oDix (6) = f (t,%) (M)

with initial condition' x (ty), where Dy denotes the fractional
derivative operator with order @ € (0, 1] on a time interval [tg, t],
and f (t, x) is piecewise continuous in t and locally Lipschitz in x.
Similar to the exponential function used in solutions of integer-
order differential equations, the Mittag-Leffler (M-L) function
given by E, 5 (2) = Y oy Wkﬂg) whereo, 8 > 0andz € C,
is frequently used in solutions of fractional-order systems (Monje
et al., 2010). Particularly, whenoe = 8 = 1, E;1(z) = €*isan
exponential function. Stability of the solutions to (1) is defined by
the M-L function as follows Li et al. (2009).

Definition 1 (Li et al., 2009 (Mittag-Leffler Stability)). The solution
of (1) is said to be Mittag-Leffler stable if ||x (t)| < {m[x (to)]

Eq1 (=1 (t — t)*)}’, where tq is the initial time, & € (0, 1), b >
0, A >0, m(0) =0, m(x) > 0,m (x) is locally Lipschitz, and E, ;
is defined as E, g with B = 1.

Lyapunov’s direct method is extended to fractional-order systems
in the following lemma to determine Mittag-Leffler stability for the
solutions of (1) in Li et al. (2009).

1 The initial condition x (to) is defined as a linear combination of internal states
zi (to), k=1, ...,],where z (t;) contains all historical information of the system
fort < ty based on the work in Trigeassou and Maamri (2011). The infinite state
model approach to resolve the initialization in Trigeassou and Maamri (2011) is also
used in the subsequent simulation section.
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