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a b s t r a c t

This paper proposes a complex delayed dynamical network consisting of N linearly and diffusively
coupled identical reaction–diffusion neural networks. By utilizing some inequality techniques, a sufficient
condition ensuring the output strict passivity is derived for the proposed networkmodel. Then, we reveal
the relationship between output strict passivity and synchronization of the proposed network model.
Moreover, based on the obtained passivity result and the relationship between output strict passivity and
synchronization, a criterion for synchronization is established. Finally, a numerical example is provided
to illustrate the correctness and effectiveness of the proposed results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Today various complex networks can be seen everywhere and
are becoming an important part of our daily life. Some of the
most well-known examples include food webs, communication
networks, social networks, power grids, cellular networks, World
Wide Web, metabolic systems, disease transmission networks,
etc. Therefore, the topology and dynamical behavior of complex
dynamical networks have been extensively studied by the re-
searchers. In particular, the synchronization problem of complex
dynamical networks has receivedmuchof the focus in recent years.
So far, a great many important results on synchronization have
been obtained for various complex networks (Arcak, 2011; Lü &
Chen, 2005; Scardovi, Arcak, & Sontag, 2010; Slotine&Wang, 2005;
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Yao, Guan, & Hill, 2009; Yao, Wang, Guan, & Xu, 2009; Zhou, Lu,
& Lü, 2006, 2008). In Slotine and Wang (2005), the authors stud-
ied the synchronization of a network with fixed and switching
topologies by using partial contraction theory. In Arcak (2011), a
sufficient conditionwas obtained to guarantee the synchronization
of a compartmental ODE model by utilizing the properties of the
Laplacian matrix and the Mean-Value theorem. However, in these
existing works, the node state is only dependent on the time. But,
in many circumstances, the node state is not only dependent on
the time, but also intensively dependent on space variable.

As a special class of complex networks, arrays of coupled
neural networks have attracted much attention in recent years.
Especially, the synchronization problem of arrays of coupled neu-
ral networks has stirred much research interest due to its fruit-
ful applications in various fields. In Hoppensteadt and Izhikevich
(2000), the authors proposed an architecture of coupled neural
networks to store and retrieve complex oscillatory patterns as syn-
chronization states. In Zhang and He (1997), a secure commu-
nication system based on coupled cellular neural networks was
presented. In addition, the study of synchronization of coupled
neural networks is an important step for understanding brain sci-
ence (Gray, 1994; Ukhtomsky, 1978). Therefore, it is interesting
to investigate the synchronization of coupled neural networks. In
Tang and Fang (2009), the authors considered a general model
of an array of N linearly coupled delayed neural networks with
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Markovian jumping hybrid coupling, which is composed of con-
stant coupling, discrete and distributed time-varying delay cou-
pling. In Li, Song, and Fei (2010), an array of coupled discrete-time
Cohen–Grossberg neural networks with time-varying delay was
discussed. However, in these existing works (Li et al., 2010; Tang &
Fang, 2009), the diffusion effects have not been considered. Strictly
speaking, diffusion effects cannot be avoided in neural networks
when electrons are moving in asymmetric electromagnetic fields,
thus we must consider the diffusion effects in neural networks. To
our knowledge, very few researchers have investigated the syn-
chronization in coupled reaction–diffusion neural networks (Liu,
2010; Wang, Teng, & Jiang, 2012). In Liu (2010), the author inves-
tigated a class of linearly coupled reaction–diffusion neural net-
workswith unbounded timedelays. InWang, Teng et al. (2012), the
adaptive synchronization in an array of linearly coupledneural net-
works with reaction–diffusion terms and time delays was studied.

Recently, passivity theory has also received a great deal of atten-
tion, andmany results on this topic have been reported. The passiv-
ity theory was firstly proposed in the circuit analysis (Bevelevich,
1968), and since then has found successful applications in diverse
areas such as stability, complexity, signal processing, chaos con-
trol and synchronization, fuzzy control, group coordination, power
control, flow control, energymanagement, and so on (Arcak, 2007;
Hill & Moylan, 1977; Wu, 2001; Xie, Fu, & Li, 1998). Although re-
search on passivity has attracted so much attention, little of that
had been devoted to the passivity properties of the spatially and
temporally complex dynamical networks until Wang, Wu and Guo
(Wang, Wu, & Guo, 2011) obtained the conditions for passivity
of reaction–diffusion neural networks. To the best of our knowl-
edge, the passivity of arrays of coupled reaction–diffusion neural
networks has not yet been considered. Therefore, it is important
and interesting to study the passivity of coupled reaction–diffusion
neural networks. On the other hand, the passivity theory has long
been a nice tool for analyzing the synchronization of the complex
networks. But in most existing works, it is assumed that the node
state is only dependent on the time. Therefore, it is essential to in-
vestigate the relationship between passivity and synchronization
of the coupled reaction–diffusion neural networks.

The objective of this paper is to study the synchronization prob-
lem of arrays of coupled reaction–diffusion neural networks by us-
ing the passivity theory. Themain contributions of this paper are as
follows. First, we establish a criterion for the output strict passiv-
ity by utilizing some inequality techniques. Second, we reveal the
relationship between output strict passivity and synchronization
of the proposed network model. Third, by employing the obtained
passivity result and the relationship between output strict passiv-
ity and synchronization, a sufficient condition for synchronization
of the complex dynamical network is derived.

The rest of this paper is organized as follows. In Section 2,
our mathematical model of complex network is presented and
some preliminaries are given. The main results of this paper are
given in Section 3. In Section 4, a numerical example is provided
to illustrate the effectiveness of the theoretical results. Finally,
Section 5 concludes the investigation.

2. Network model and preliminaries

Let R = (−∞, +∞), R+
= [0, +∞), Rn be the n-dimensional

Euclidean space and Rn×m be the space of n×m real matrices. P ∈

Rn×n > 0(P ∈ Rn×n 6 0) means that matrix P is symmetric and
semi-positive (semi-negative) definite. P ∈ Rn×n > 0(P ∈ Rn×n <
0) means that matrix P is symmetric and positive (negative)
definite. In denotes the n × n real identity matrix. BT denotes the
transpose of matrix B. ⊗ denotes the Kronecker product of two
matrices. λm(·) and λM(·) denote the minimum and the maximum
eigenvalue of the corresponding matrix, respectively. Ω = {x =

(x1, x2, . . . , xq)T | |xk| < lk, k = 1, 2, . . . , q} is an open
bounded domain in Rq with smooth boundary ∂Ω , Ω = Ω ∪

∂Ω , and mesΩ denotes the measure of Ω . For any e(x, t) =

(e1(x, t), e2(x, t), . . . , en(x, t))T ∈ Rn, (x, t) ∈ Ω × R, ∥e(·, t)∥2
denotes

∥e(·, t)∥2 =


Ω

n
i=1

e2i (x, t)dx

 1
2

.

In addition, we define ∥e(·, t)∥τ = sup−τ6θ60 ∥e(·, t + θ)∥2.
In this paper, we consider a complex dynamical network

consisting of N identical reaction–diffusion neural networks. To
facilitate the readers, the complex network model is presented in
a step-by-step format.

A single reaction–diffusion neural network with Dirichlet
boundary conditions is described by the following partial differ-
ential equations (PDEs):

∂wi(x, t)
∂t

= di△wi(x, t) − aiwi(x, t) + Ji

+

n
j=1

bijfj(wj(x, t)) (1)

where i = 1, 2, . . . , n, n is the number of neurons in the network;
x = (x1, x2, . . . , xq)T ∈ Ω ⊂ Rq

; wi(x, t) ∈ R is the state of the
ith neuron at time t and in space x; △ =

q
k=1

∂2

∂x2k
is the Laplace

diffusion operator on Ω; di > 0 represents the transmission dif-
fusion coefficient along the ith neuron; fj(·) denotes the activation
function of the jth neuron; ai > 0 represents the rate with which
the ith neuron will reset its potential to the resting state when dis-
connected from the network and external input; bij denotes the
strength of the jth neuron on the ith neuron; Ji is a constant ex-
ternal input.

The initial value and boundary value conditions associatedwith
system (1) are given in the form

wi(x, 0) = φi(x), x ∈ Ω, (2)
wi(x, t) = 0, (x, t) ∈ ∂Ω × [0, +∞) (3)

where φi(x)(i = 1, 2, . . . , n) is bounded and continuous on Ω .
Throughout this paper, the function fj(·)(j = 1, 2, . . . , n) sat-

isfies the Lipschitz condition, that is, there exists positive constant
ρj such that

|fj(ξ1) − fj(ξ2)| 6 ρj|ξ1 − ξ2|

for any ξ1, ξ2 ∈ R, where | · | is the Euclidean norm.
We can rewrite system (1) in a compact form as follows:

∂w(x, t)
∂t

= D△w(x, t) − Aw(x, t) + J + Bf (w(x, t)) (4)

where D = diag(d1, d2, . . . , dn), B = (bij)n×n, J = (J1, J2,
. . . , Jn)T , A = diag(a1, a2, . . . , an), f (w(x, t)) = (f1(w1(x, t)),
f2(w2(x, t)), . . . , fn(wn(x, t)))T , w(x, t) = (w1(x, t), w2(x, t), . . . ,
wn(x, t))T .

N mutually coupled reaction–diffusion neural networks (4) can
result in a complex network, which is described by

∂zi(x, t)
∂t

= D△zi(x, t) − Azi(x, t) + Bf (zi(x, t))

+ c1
N
j=1

G1
ijΓ1zj(x, t) + J

+ c2
N
j=1

G2
ijΓ2zj(x, t − τ(t)) + ui(x, t) (5)
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