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a b s t r a c t

This paper is concerned with the Bayesian system identification of structural dynamical
systems using experimentally obtained training data. It is motivated by situations where,
from a large quantity of training data, one must select a subset to infer probabilistic
models. To that end, using concepts from information theory, expressions are derived
which allow one to approximate the effect that a set of training data will have on parameter
uncertainty as well as the plausibility of candidate model structures. The usefulness of this
concept is then demonstrated through the system identification of several dynamical
systems using both physics-based and emulator models. The result is a rigorous scientific
framework which can be used to select ‘highly informative’ subsets from large quantities of
training data.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

To be practically useful, any system identification method needs to be able to quantify and propagate the inevitable
uncertainties which arise as a result of noise-contaminated measurements, as well as the fact that one's chosen model
structure will never be able to perfectly replicate the physics of the system of interest. Consequently, system identification is
best approached using probability logic such that, rather than searching for the ‘perfect model’, one is able to assess the
relative plausibility of a set of models as well as the parameters within those models [1]. As a result of seminal papers in the
machine learning [2] and structural dynamics [3] communities, it is now widely accepted that both levels of inference
(parameter estimation and model selection) can be achieved using a Bayesian approach.

With regard to parameter estimation, the plausibility of a model parameter vector θ¼ fθ1;…;θND g given a model
structure M and training data D can be expressed using Bayes' Theorem:

Pðθ D;Mj Þ ¼ PðDjθ;MÞPðθjMÞ
PðDjMÞ : ð1Þ

One's belief in the plausibility of θ before the training data were known is represented by the prior distribution PðθjMÞ,
while one's belief in the plausibility of θ after the training data are known is represented in the posterior distribution
PðθjD;MÞ. PðDjθ;MÞ is termed the likelihood and represents the plausibility that the training data D was witnessed given
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model structure M and parameter vector θ. The evidence PðDjMÞ is essentially a normalising constant given by

PðDjMÞ ¼
Z

⋯
Z

PðDjθ;MÞPðθjMÞdθ1⋯dθND ð2Þ

thus ensuring that the posterior probability distribution integrates to unity. When dealing with nonlinear systems, the
evidence integral is often intractable and, as a result of the curse of dimensionality, cannot practically be evaluated
numerically when the number of unknown parameters is greater than 3.

To surmount this issue one can choose to generate samples from the posterior distribution using Markov chain Monte Carlo
(MCMC) methods, which can be implemented without having to evaluate Eq. (2). While many MCMC methods have been
developed (see Refs. [4–6] for a comprehensive discussion), by far the most popular is the Metropolis–Hastings (MH)
algorithm. This involves the evolution of an ergodic Markov chain through the parameter space such that it is able to converge
to, and then generate samples from, the posterior distribution. Ensuring that the chain has converged to the globally optimum
region of the parameter space (rather than a ‘local trap’) is a nontrivial problemwhich has led to the development of the well-
known Simulated Annealing algorithm [7] (and its many variants [8–10]) and, more recently, the Adaptive Metropolis–
Hastings [11], Transitional Markov chain Monte Carlo [12] and Asymptotically Independent Markov Sampling [13] algorithms.

Once converged, MCMC can then be used to generate samples from the posterior. These samples can be used to analyse
parameter correlations, to propagate one's uncertainty in the parameter estimates and to conduct a sensitivity analysis of
the model structure of interest (see [14,15] for example). While undoubtedly useful, MCMC tends to be expensive, as many
model runs are usually required before one can build up a reasonable ‘picture’ of the posterior distribution. This is
compounded by the fact that, by the nature of MCMC, the samples have not been generated independently and are in fact
correlated with each another. Consequently, to avoid making biased estimates, it is often the case that many of the samples
generated by MCMC need to be ‘thrown away’ such that the correlation between the remaining samples is reduced (this
process is typically referred to as thinning). To alleviate this issue one may choose an alternative to the MH algorithm such as
Hybrid Monte Carlo (HMC) [16] which tends to produce samples which are less strongly correlated than the MH algorithm
(HMC is discussed in the context of structural dynamics in [17]). However, as HMC utilises estimates of the gradient of the
posterior distribution – which incurs additional computational cost – the author's have found that the ability of HMC to
outperform the MH algorithm is very dependent on the problem at hand.

To reduce the computational expense of Monte Carlo analysis one may choose to utilise emulators (also known as meta-
models or surrogate models) which are inferred directly from the training data rather than from the underlying physics of
the system (see [18] for example). The relatively simple structures of emulators often make them considerably easier to
analyse, and computationally cheap when compared to physics-based models.

The work in this paper specifically addresses the situation where, to perform Bayesian system identification as part of
some collaborative work, one is presented with a very large quantity of data from which to infer probabilistic models.
In such a scenario – particularly if one is aiming to utilise physics-based models – it is usually desirable to select a small
subset of the training data to reduce the computational cost of running MCMC.1 In such a scenario one would ideally select a
subset of data which is both short and highly informative with regard to one's parameter estimates. Consequently, the first
aim of this paper is to provide a framework which allows one to view the information content – specifically with regard to
one's parameter estimates – of large sets of training data before the application of MCMC. This allows one to select subsets of
data which are both small, and from which one can learn a great deal about the parameters of a candidate model.

The second aim of this paper is with regard to the second level of inference: model selection. Whether using physics-
based models or emulators, any system identification procedure will involve choosing a model M from a set of candidate
model structures (as implied by Eq. (1)). This task is complicated by the fact that model performance cannot be judged
simply by how well a model is able to replicate a set of training data as this will lead to overfitted models based on
redundant parameter sets. This issue can be addressed by using model selection criteria such as the AIC [20] or the BIC [21],
which reward model fidelity while also penalising model complexity. Alternatively, one can phrase the model selection
problem using Bayes' Theorem:

PðMi Dj Þ ¼ PðDjMiÞPðMiÞ
PðDÞ ð3Þ

where Mi is a model from a set of candidate model structures M ¼ fM1;…;MNM g. Assuming that there is no prior bias over
any of the models in M, one can then rate the relative plausibility of two competing model structures (models Mi and Mj

for example) by computing a Bayes Factor:

βi;j ¼
PðMijDÞ
PðMjjDÞ: ð4Þ

The Bayes Factor is a model selection criterion which, it can be shown, penalises overfitting without the introduction of ad
hoc penalty terms (see [1,2,6,22] for more details). Recent work [23] has also shown that such an approach can also be used

1 Clearly the computational savings achieved through this approach is dependent on the size of the chosen subset, relative to the full set of training
data. in situations where the full set of training data is relatively small, the computational savings that could be made through the methods presented in
this paper may be small relative to what can be achieved through the parallel implementation of MCMC algorithms (see [19] for example).
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