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a b s t r a c t

Inferring causal relationships among cellular components is one of the fundamental problems in
understanding biological behaviours. The well known extended Kalman filter (EKF) has been proved to
be a useful tool in simultaneously estimating both structure and actual gene expression levels of a gene
regulatory network (GRN). First-order approximations, however, unavoidably result in modelling errors,
but the EKF based method does not take either unmodelled dynamics or parametric uncertainties into
account, which makes its estimation performances not very satisfactory. To overcome these problems, a
sensitivity penalization based robust state estimator is adopted in this paper for revealing the structure
of a GRN. Based on the specific structure of the estimation problem, it has been proved that under some
weak conditions, both the EKF basedmethod and themethod suggested in this paper provide a consistent
estimate, but the suggested method has a faster convergence speed. Compared with both the EKF and
the unscented Kalman filter (UKF) based methods, simulation results and real data based estimations
consistently show that both convergence speed and parametric estimation accuracy can be appreciably
improved. These lead to significant reductions in both false positive errors and false negative errors, and
may imply helpfulness of the suggested method in better understanding the structure and dynamics of
actual GRNs.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Most functions in a cell are a result of mutual regulation ef-
fects among a large number of molecular components underly-
ing a biochemical reaction network. One fundamental problem
in systems biology is to describe the causal relationships among
these components. This could help to more deeply understand cell
functions, gain further insights into the regulation processes, and
find new target genes of complex diseases, etc. With the develop-
ment of high-throughput technologies, such as DNA microarrays,
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possibilities become significantly higher for revealing the structure
of a gene regulatory network (GRN) and developing its mathemat-
ical model, as thousands of gene expression data become available.

Several methods for modelling GRNs have been reported in
literature. The simplest model of GRNs is the Boolean network
model (Akutsu, Miyano, & Kuhara, 1999; Kauffman, 1993), for
which somemodelling techniques for inferring interactions among
genes have already been successfully developed. Earlier methods
typically employed correlation or partial correlation coefficients
between expression patterns of all gene pairs to infer ‘‘coexpres-
sion networks’’ (Eisen, Spellman, Brown, & Botstein, 1998). Due
to the nonlinear nature of GRNs, these coefficients usually fail
to capture more complicated statistical dependencies between
expression patterns. To overcome these difficulties, a mutual
information (MI) based method has been proposed, which com-
putes MIs between all gene pairs and obtains a ‘‘relevance net-
work’’ through selecting gene pairs whoseMI is larger than a given
threshold (Butte & Kohane, 2000). In addition, various refinements
have beenproposed to discriminate betweendirect and indirect in-
teractions in relevance networks, such as the CLR algorithm (Faith
et al., 2007), the ARACNE algorithm (Margolin et al., 2006), and
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the MRNET algorithm (Meyer, Kontos, Lafitte, & Bontempi, 2007).
Moreover, to speed up estimations, some regression analysis based
methods have also been developed to GRN identification (Irrthum,
Wehenkel, & Geurts, 2010; Xiong & Zhou, 2012). All of these
algorithms, however, can model only static relations. A more pre-
cise and insightful construction method is needed, which can ef-
fectively incorporate random effects caused by perturbations and
temporal evolutions of gene interactions. To facilitate information
extraction from time series expression profiles, various dynamical
models have been developed, such as dynamic Boolean networks
(Martin, Zhang, Martino, & Faulon, 2007), neural networks (Tian
& Burrage, 2003), and Bayesian networks (Friedman, Linial, Nach-
man, & Pe’er, 2000; Liu, Sung, & Mittal, 2006), etc.

Among the statistical techniques currently adopted in mod-
elling GRNs, Bayesian inferences have received the most wide-
spread attention (Kim, Imoto, &Miyano, 2003;Murphy et al., 1999;
Perrin et al., 2003). Under the dynamic Bayesian regime, themodel
of GRNs is extensively considered as a state-space model, which
consists of gene expression measurement equations and gene reg-
ulation equations (Bansal, Della Gatta, & Di Bernardo, 2006; Perrin
et al., 2003). In this state-space model, gene expression values are
assumed to depend not only on the current cellular states but also
on external inputs or disturbances, which reflects the nature of a
dynamic network. In the early works, it is generally assumed that
gene regulations can be described by linear differential/difference
equations, and the well known Kalman filter is used to recover the
structure of a GRN (Perrin et al., 2003). However, due to the inher-
ent nonlinear nature of GRNs, there exist some restrictions when
a linear model is applied to describe gene behaviours (Qian, Wang,
& Dougherty, 2008). In short, linear approximation is valid only
when a GRN has slow dynamics around its steady-state. In order
to capture complex gene interactions more efficiently, it is crucial
to alleviate this linearity assumption. One way to make the GRN
model more appropriate is to include nonlinear terms, such as the
so called S-system (Wang, Qian, & Dougherty, 2010), sigmoid func-
tion (De Jong, 2002; Huang, Tienda-Luna, &Wang, 2009; Noor, Ser-
pedin, Nounou, & Nounou, 2012; Wang, Liu, Liu, Liang, & Vinciotti,
2009), etc.

When a nonlinear state-space model is adopted, the extended
Kalman filter (EKF) is one efficient method for GRN structure
recovering (Noor et al., 2012; Wang et al., 2009). The EKF based
approach works well with both steady state data and slow
dynamical data. On the other hand, there may occur considerable
performance deteriorations in this approach if either the initial
state estimate is incorrect or there are appreciable deficiencies
in the system model caused by first-order approximations (Noor
et al., 2012). More specifically, as the EKF based approach does
not take either unmodelled dynamics or parametric uncertainties
into account, its estimation performances may not be satisfactory
due to its slow convergence speed which usually leads to low
estimation accuracy. Mistakes are often caused by the low
estimation accuracy of an estimation algorithm. For example, in
inferring the structure of a GRN, an estimated parameter, say ĝ [ij],
is often used to decide whether gene j directly regulates gene i. A
false positive error is made when the actual value of g [ij] equals to
zero, but its estimate ĝ [ij] has a large magnitude. This means that
unmodelled dynamics and parametric uncertainties should not be
ignored in identifications.

To enhance estimation performances, GRN structure recovering
is resorted in this paper to the robust state estimator suggested
in Zhou (2010), after the first-order approximation of GRNs. As a
result, the suggested method is robust against model errors due
to GRN linearizations and state estimate inaccuracies. Moreover,
based on the specific structure of the estimation problem, it has
been proved that under some weak requirements, the estimated
network topology by both the EKF basedmethod and the suggested

method converges to the actual structure in the mean square
sense, but the convergence speed of the suggested method is
faster than that of the EKF based method. The suggested method
has been used to identify an artificially constructed nonlinear
GRN. Compared with the EKF based method, computation results
show that the convergence speed is distinctly improved, and
parametric estimation accuracy is significantly increased, which
greatly reduces both false positive errors and false negative errors.
Consistent results have also been obtained when these methods
are applied to a benchmark problem proposed in the DREAM series
project. Moreover, computation results with a real GRN of yeast
show that the proposed method can identify causal relationships
effectively.

In these computations, the suggested method has also been
compared to another well known state estimation method for
nonlinear dynamic systems, that is, the unscented Kalman filter
(UKF), and similar observations have been obtained. This means
that the suggested method may be helpful in solving actual GRN
reconstruction problems.

The rest of this paper is organized as follows. In the next section,
a robust structure identification algorithm is derived. Afterwards,
convergence conditions are investigated in Section 3. In Section 4,
some calculated results are reported. The paper is concluded by
Section 5, inwhich some important characteristics of the suggested
method are summarized, as well as some important works worthy
of further efforts. An Appendix is included to give proofs of some
technical results.

The following notation and symbols are adopted. vec(X)
denotes the operation of stacking the columns of matrix X from
left to right, while diag


Xi|

N
i=1


a block diagonal matrix with its ith

block diagonal element being Xi, and col

Xi|

N
i=1


the vector/matrix

stacked by Xi|
N
i=1 with its ith row block vector/matrix being Xi.

Xij|
i=M,j=N
i=1,j=1


represents a matrix withM ×N blocks and its ith row

jth column block matrix being Xij, while reshape(A,M,N) an M
rowN columnmatrixwhose elements are taken column-wise from
an MN dimensional column vector A. E [x] stands for the expected
value of a random variable x. δij is the Kronecker delta function
which equals to 1 when i = j and to zero whenever i ≠ j. tr (A)
stands for the trace of the matrix A. Given two symmetric matrices
P and Q with compatible dimensions, the inequality P ≥ Q means
that P −Q is positive semi-definite. Moreover, λmin (A) represents
the minimum eigenvalue of a symmetric matrix A.

2. Robust structure identification algorithm for GRNs

According to chemical principles, such as theMichaelis–Menten
kinetics, etc., dynamic reactions occurred in a practical biochemical
networks are inherently nonlinear, which means that GRNs must
be treated in general as a nonlinear dynamic system (Akutsu
et al., 1999; De Jong, 2002; Kauffman, 1993; Wang et al., 2010).
An extensively adopted way in dealing with dynamic systems is
the so-called state-space approach. In particular, a nonlinear state
evolution equation for GRNs consisting of n genes can be described
by2

xk+1 = f (xk, θ) + wk, (1)

in which, k stands for the temporal variable, xk = col{xk,i|ni=1} is
the vector consisting of expression levels of all the genes, f (xk, θ)
is a vector of nonlinear functions, θ ∈ Rp is a vector consisting of

2 It is worthwhile tomaintain here that in actual GRNs, rather than directly act on
another gene, a gene exerts its influence through itsmRNAs, proteins, etc. However,
when relations among genes are discussed, models like Eqs. (1) and (3) are usually
adopted (Huang et al., 2009; Kauffman, 1993;Marbach et al., 2012; Prill et al., 2010).
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