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a b s t r a c t

This paper covers the investigation of a nonlinear jointed structure in the frequency
domain. Due to frictional nonlinearities the behavior of that system is approximated using
the Multiharmonic Balance Method (MHBM). Two models of different complexity are
presented. The first is a simple three degree-of-freedom model which is valid because of
the special design of the structure. This model enables a very fast and accurate prediction
of the stationary behavior of the real system. In order to attain a more general way of
modeling structures including joints, the second model is a Finite Element (FE) model. For
the discretization of the contact plane, “Zero Thickness” (ZT) elements are implemented.
These elements allow the application of nearly arbitrary constitutive laws for describing
the dynamic joint behavior. Here a coupled three dimensional contact law including dry
friction effects is applied and the needed partial derivatives for the MHBM procedure are
given analytically. Using measurements from the real structure and performing a model
updating process, the parameters of the two presented models are estimated.
The calculation results are compared to measurements in the frequency as well as in
the time domain.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Joints play an important role in most mechanical applications and the prediction of the dynamical behavior of jointed
structures is a challenging task in structural dynamics. Their inclusion leads to, for example, shifts of the resonance
frequencies or the maximal response amplitude within a resonance due to damping effects. These effects are known as
“structural damping” [24,10]. They are crucial for structures, where the internal “material damping” either is quite low, as is
the case for typical applications in mechanical engineering such as devices made of metal, and may even lead to instabilities
in rotating machineries [7]. The effects, which can be summed up to the abstract term of structural damping, can often be
traced back to the appearance of dry friction between the contacting parts. Friction occurs, on the microscopic scale, because
of the sliding and the deformation of asperities, when the contacting bodies move relative to each other [18,39]. Since it is
not practicable to take into account all microscopic details of contact surfaces for simulations of real mechanical devices, it is
often aimed to find an analogous model on the macroscopic scale. This model represents a friction law, in terms of a
constitutive contact law, by exploiting the knowledge following from classical contact mechanics [23,21] or being observed
in measurements [27]. On this way a significant number of different friction models have been established [8,2], where
particularly those based on rheological models have a broad range of application. Especially Masing and Iwan models [19,9],
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which are based on the parallel and serial arrangement of Jenkin elements [20] respectively, have to be pointed out as they
are often used for representing the behavior of bolted joints [26,34,31]. A good overview of further literature on the
framework of joints in general can be found in reference [3].

The typical form of the equations of motion for a system containing a (friction type) nonlinearity reads as

M €uðtÞþD _uðtÞþKuðtÞþ f nlðu; _u; tÞ ¼ f eðtÞ; ð1Þ
containing not only the mass, damping and stiffness matrices M, D, K , respectively, as well as the excitation forces f e, but
additionally a vector of inner forces f nl which may depend nonlinearly on the time, on the displacement vector u and its
derivative _u with respect to time. In this contribution, the focus is on investigating the behavior of a jointed structure over a
broad range of excitation frequencies within the frequency domain corresponding to the stationary behavior in the time
domain. Due to the nonlinear forces f nl, it is not possible to perform an analytical transformation of the system equations
into the frequency domain directly. Instead, a possible approach to approximate the nonlinear term is the usage of the
Harmonic Balance Method (HBM) [40,9,13], which was originally proposed by Kryloff and Bogoliuboff [22]. In the
framework of the HBM it is assumed that a harmonic excitation of the system leads to a harmonic response. A generalization
or extension to periodic excitation and response functions is the Multiharmonic Balance Method (MHBM) which found its
most popular application in the dynamic simulation of turbine bladings [29,33,35]. In the framework of this paper, the
MHBM is realized using the Alternating Frequency Time Domain Method (AFT) [4,30,5]. The calculation procedure is applied
to a friction oscillator, which is modeled firstly as a 3-DOF oscillator with a one dimensional contact law and secondly via a
Finite Element (FE) model with a corresponding three dimensional contact law. To the authors knowledge, it is a novel
approach, that a coupled three dimensional constitutive law accounting for dry friction is applied within the MHBM by
considering an analytical formulation of the needed Jacobian.

2. Multiharmonic Balance Method

This section is provided to give a brief introduction to the MHBM and an overview of the chosen nomenclature. Within
the scope of the MHBM the excitation forces f eðtÞ as well as the response displacements uðtÞ of a system may be periodic in
nature. They are approximated by the ansatz of a truncated Fourier series

f eðtÞ≊Fe;ð0Þ þ ∑
nh

k ¼ 1
ð ~F e;ðkÞe

i�kωtþ ~F
n

e;ðkÞe
� i�kωtÞ ð2Þ

and

uðtÞ �U ð0Þ þ ∑
nh

k ¼ 1
ð ~U ðkÞe

i�kωtþ ~U
n

ðkÞe
� i�kωtÞ; ð3Þ

which resolves nh harmonic parts and neglects all higher harmonics. In these formulas the subscript numbers in brackets
show the respective harmonic part, the � indicates that the corresponding values are complex and n stands for the
conjugate complex.

The same ansatz is used for the nonlinear forces f nl as well. If the excitation forces are harmonic or have a limited
number of harmonics less than nh, Eq. (2) can also be exactly valid. The conjugate complex parts can be dropped since they
contain no additional information. So the equations of motion can be written as

∑
nh

k ¼ 0
ðð�k2ω2Mþ i � kωDþKÞ ~U ðkÞe

i�kωtÞþ ∑
nh

k ¼ 0
ð ~F nl;ðkÞe

i�kωtÞ ¼ ∑
nh

k ¼ 0
ð ~F e;ðkÞe

i�kωtÞ: ð4Þ

In order to solve this complex nonlinear system of equations it is transformed into a real valued form by splitting it into its
real and imaginary part. Additionally, the equations are split into their different harmonic components. This increases the
dimension of the problem by a factor of ndim ¼ 1þ2 � nh. As an example, the real valued representation of the vector of
response displacements in the frequency domain will read as

U ¼ ½UT
ð0Þ; Rf ~U ð1Þg

T
; Rf ~U ð2Þg

T
; …; Rf ~U ðnhÞg

T
; If ~U ð1Þg

T
; If ~U ð2Þg

T
; …; If ~U ðnhÞg

T �T : ð5Þ
Applying this to the complete system (4) the real valued harmonic component representation is

SðωÞUðωÞþFnlðUðωÞÞ ¼ FeðωÞ; ð6Þ
where S denotes the diagonal block matrix of the real valued dynamic stiffness matrices

SðωÞ ¼
K 0 0
0 diagð�k2ω2MþKÞ diagð�kωDÞ
0 diagðkωDÞ diagð�k2ω2MþKÞ

2
64

3
75: ð7Þ

When looking again at the classical HBM at this point the nonlinear forces are derived by analytically calculating the Fourier
coefficients. However, because of the coupling of all the harmonic components with each other, this step cannot practically
be done when dealing with more than one harmonic as it is the case for the MHBM [30]. Therefore the Alternating
Frequency Time Domain Method (AFT) [4] is applied here. In the framework of the AFT method, the complex valued
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