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a b s t r a c t

This work details the Bayesian identification of a nonlinear dynamical system using a
novel MCMC algorithm: ‘Data Annealing’. Data Annealing is similar to Simulated Anneal-
ing in that it allows the Markov chain to easily clear ‘local traps’ in the target distribution.
To achieve this, training data is fed into the likelihood such that its influence over the
posterior is introduced gradually - this allows the annealing procedure to be conducted
with reduced computational expense. Additionally, Data Annealing uses a proposal
distribution which allows it to conduct a local search accompanied by occasional long
jumps, reducing the chance that it will become stuck in local traps. Here it is used to
identify an experimental nonlinear system. The resulting Markov chains are used to
approximate the covariance matrices of the parameters in a set of competing models
before the issue of model selection is tackled using the Deviance Information Criterion.
& 2014 The Author. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

This paper is concerned with the system identification of a nonlinear dynamical system using experimentally obtained
training data. A probabilistic, Bayesian approach is utilised throughout. Such an approach is now well established in the
structural dynamics community – relatively recent advances include the use of Bayesian methods in structural health
monitoring [1], modal identification [2], state-estimation [3] (through use of the particle filter), the sensitivity analysis of
large bifurcating nonlinear models [4] as well as an interesting study investigating the relations between frequentist and
Bayesian approaches to probabilistic parameter estimation [5].

The identification problem detailed herein is one of model selection as well as parameter estimation such that, using
experimental data D, one must endeavor to find the optimum model M from a set of competing model structures as well as
estimate the parameter vector θ of that particular model. Using Bayes' theorem a measure of the plausibility of a parameter
vector θ, given experimental data D and assumed model structure M, is given by

Pðθ D;Mj Þ ¼ PðDjθ;MÞPðθjMÞ
PðDjMÞ ð1Þ

where PðθjD;MÞ is the posterior probability density function (PDF) which one wishes to evaluate, PðDjθ;MÞ is termed the
likelihood, PðθjMÞ the prior and PðDjMÞ the evidence. The likelihood represents the probability that the experimental
training data D was witnessed according to the model M with parameters θ. Defining the likelihood requires the selection
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of an error-prediction model which describes the uncertainties present in the measurement and modelling processes (see
[6] for a detailed discussion of error-prediction models). The prior is a PDF which represents one's parameter estimates for
model M before the training data was known. The evidence is a normalising constant which ensures that the posterior PDF
integrates to one.

This paper makes two main contributions. Firstly, a novel variant of Simulated Annealing (referred to as Data Annealing)
is proposed and applied to a real system identification problem. It is shown to be computationally cheap and easy to tune.
Secondly, it is shown that the issue of model selection of a real nonlinear dynamical system can be addressed using the
Deviance Information Criterion (DIC). For the sake of readability the remainder of the introduction is split into two sections.
The first outlines the motivation for the Data Annealing algorithm while the second focuses on the issue of model selection.

1.1. Motivation for the data annealing algorithm

For the case where one is attempting to identify ND parameters (such that θARND ), the evidence is given by

PðDjMÞ ¼
Z

⋯
Z

PðDjθ;MÞPðθjMÞ dθ1⋯dθND : ð2Þ

This integral is usually intractable and its multidimensional nature makes it too computationally expensive to evaluate
numerically (if ND42). Relatively early papers such as [7] made use of the property that the maximum a posteriori (MAP)
parameter vector remains the same regardless of whether the posterior distribution has been normalised such that, through
locating the MAP, a Taylor series expansion of the log posterior could be used to approximate the posterior PDF as a
Gaussian.1 Since then, an increase in computing power has allowed the adoption of Markov chain Monte Carlo (MCMC)
methods. These involve the creation of an ergodic Markov chain whose stationary distribution is equal to the posterior PDF
such that, once converged, the Markov chain is generating samples from PðθjD;MÞ (see [9] for more information on the
convergence of Markov chains). This can be achieved without having to evaluate the evidence term. While many MCMC
methods are available in the literature (Hamiltonian Monte Carlo for example [10]), by far the most popular is the
Metropolis algorithm. Although well-established, a brief description of the Metropolis algorithm is given here as it helps to
establish the motivation for the Data Annealing algorithm presented in Section 2 of this work.

Essentially, the aim of MCMC methods is to generate a sequence of samples fθð1Þ
;θð2Þ

;…g from a target PDF πðθÞ=Z (where
Z is a normalising constant). In the context of this paper, πðθÞ represents the unnormalised posterior PDF and Z represents
the evidence term. Initialising the Metropolis algorithm from parameter vector θðiÞ, a new state θ0 is proposed using a user-
defined proposal PDF. The proposal PDF is conditional on the current state θðiÞ. For example, in the case where a Gaussian
proposal is used then the new state is generated according to

θ0 �N ðθðiÞ
;ΣÞ ð3Þ

(where Σ is a user-defined covariance matrix). The new state is then accepted with probability:

a¼min 1;
πðθ0Þ
πðθðiÞÞ

( )
: ð4Þ

If accepted then θðiþ1Þ ¼ θ' else θðiþ1Þ ¼ θðiÞ. This has the property that if the proposed state θ0 is in a region of higher
probability density than the current state then it is always accepted. However, the Markov chain is also able to move into
regions of lower probability density. One of the benefits of using such an acceptance rule is that the acceptance probability a
can be computed without having to evaluate the evidence term. It can be shown that such an acceptance rule allows the
chain to generate samples from πðθÞ (for more information references [8,11] are recommended).

The advantages of using MCMC are numerous. Recalling that the purpose of system identification is usually to establish a
reliable model which can be used to accurately and robustly predict the system's future response then, using the notation
outlined in [12], one may want to predict a structural quantity of interest hðθÞ using

R¼
Z

⋯
Z

hðθÞPðθjD;MÞ dθ1⋯dθND : ð5Þ

While evaluating Eq. (5) is difficult (for the same reason it is difficult to evaluate the evidence term), if one has used an
MCMC algorithm to generate samples fθð1Þ

;…;θðMÞg from the posterior parameter distribution then Eq. (5) can be
approximated by

R� 1
M

∑
M

i ¼ 1
h θðiÞ� �

: ð6Þ

Additionally, it has been shown that important information with regard to parameter correlations can be realised through
the use of MCMC methods [13] (this is also demonstrated in Section 4 of the present work). However, MCMC also has its
disadvantages. Before samples from the target distribution can be drawn in an effective manner, the Markov chain must

1 For more information the reader may wish to consult the description of the Laplace approximation given in reference [8]
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