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a b s t r a c t

In this paper we give necessary and sufficient conditions for weak and strong quadratic stability of a class
of switched linear systems consisting of two subsystems, associated with symmetric transfer function
matrices. These conditions can simply be tested by checking the eigenvalues of the product of two
subsystemmatrices. This result is an extension of the result by Shorten and Narendra for strong quadratic
stability, and the result by Shorten et al. onweak quadratic stability for switched linear systems. Examples
are given to illustrate the usefulness of our results.
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1. Introduction

Consider the switched linear system

Σσ : ẋ = (1 − σ(t)) A1x + σ(t)A2x, σ (t) ∈ {0, 1}, (1)

where A1 and A2 are constantmatriceswith real entries, and σ(t) is
an arbitrary time switching signal which assumes a finite number
of switchings within a finite time interval. Let P be a symmetric
positive definite matrix satisfying

AT
i P + PAi = −Qi, i ∈ {1, 2}. (2)

Then, the function V (x) = xTPx is said to be a strong common
quadratic Lyapunov function (CQLF) for the switched system (1)
if the Qi’s are both positive definite. For the purpose of this paper,
V is said to be aweak common quadratic Lyapunov function if both
of the Qi’s are positive semi-definite and exactly one of them is
singular. If such a CQLF exists the switched system (1) is called
strongly quadratically stable implying that all solutions converge
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exponentially to zero, or weakly quadratically stable implying that
all solutions are bounded (Note that strong quadratic stability is
a sufficient condition for exponential stability of switched linear
systems. For more results in this respect, see, e.g., Hespanha and
Morse (1999); Zhang and Huijun (2010).) In this paper, we wish
to determine conditions on A1 and A2 such that a CQLF exists.
Such stability problems arise in a variety of applications; see,
for example, Liberzon (2003); Lin and Antsaklis (2009). Over the
past decade many techniques have been developed to study CQLF
existence problems. The most notable among these techniques
are related to the use of Linear Matrix Inequalities (LMI) in the
context of convex optimization. While LMI’s and other numerical
techniques are useful, usually they offer little insight into when
such functions exist, and their extensions to cases where one or
more of the system matrices is singular are problematic. Thus it
is of interest to develop algebraic conditions that can be used to
check for the existence of common quadratic Lyapunov functions.
Initial results in this direction were given in Shorten, Corless,
Wulff, Klinge, and Middleton (2009) and Shorten and Narendra
(2003), where it was shown that any two matrices, one of which
is Hurwitz and the other one has all eigenvalues in the open left
half plane and exactly one eigenvalue at the origin, and differ by
a rank-1 matrix, will admit a weak CQLF provided that the matrix
product A1A2 has no real negative eigenvalues and exactly one zero
eigenvalue. Despitemuch effort it has not been possible to develop
similar results for more general matrix pairs. An alternative
approach therefore is to seek pairs of matrices for which similar
conditions hold true. In this paper we identify one such class.
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Specifically,we are interested in systems that arise in the context of
symmetric transfer functionmatrices. Symmetric transfer function
matrices are seen frequently, for example in the study of electrical
circuits (Helmke, Rosenthal, & Wang, 2006; Semlyen & Gustavsen,
2009). Switched systems arise in situations where intermittent
feedback is used to control such plants. The principal contribution
in the note is to demonstrate that the Kalman–Yakubovic–Popov
lemma is tight for such systems. We then use this observation to
recover compact spectral conditions for the existence of a common
(strong or weak) quadratic Lyapunov function for a certain class
of switched systems. Finally, before proceeding it is important to
note that even though this paper follows Shorten and Narendra
(2003) and Shorten et al. (2009) in spirit (albeit for a much more
general system class), the extension presented here does not
immediately follow from these results, and is highly non-trivial
involving detailed and original mathematical arguments.

Our paper is structured as follows. We conclude this section
with themathematical notation used in the paper.We thenpresent
our problem statement and some preliminary results that we shall
use. We then present our main result and give some examples to
illustrate their use.

Notation: Throughout, R and C denote the field of real and
complex numbers, respectively.We denote n-dimensional real Eu-
clidean space by Rn and the space of n × n matrices with real en-
tries byRn×n. We denote a state space representation of them × m
transfer function matrix G(s) = C(sI − A)−1B + D by (A, B, C,D),
where we always assume that A ∈ Rn×n, B ∈ Rn×m has full column
rank, C ∈ Rm×n has full row rank, and D ∈ Rm×m for some n ≥ m.
The inequality Q ≥ 0 (respectively Q > 0) denotes that thematrix
Q is positive semi-definite (respectively positive definite). ⊗ de-
notes the Kronecker product of two matrices, and v∗ denotes the
conjugate transpose of a vector v ∈ Cn. Let yij be the (i, j) element
of the matrix Y ∈ Rn×n. Then, we define the vectorization of Y as
vec(Y ) = [y11 . . . yn1 y12 . . . yn2 . . . y1n . . . ynn]T .

2. Problem statement: switched systems associated with sym-
metric transfer function matrices

We are interested in determining the existence of a CQLF for
the following class of switched system: ẋ = A(t)x where A(t)
is a matrix valued function taking the values A1 or A2 which are
related through a symmetric transfer function matrix. Moreover,
we assume that A1 is Hurwitz (all eigenvalues have negative real
part) and thatA2 has eigenvalues that are either in the open left half
plane or at the origin. It is convenient to rewrite these matrices as
A1 := A, and A2 := A−BD−1C , and using this notation, to associate
a transfer function matrix G(s) = GT (s) = C(sI − A)−1B + D with
the system. Thus, with this choice of A1 and A2 the switched system
(1) is reformulated as

Σσ : ẋ = (A − σ(t)BD−1C)x, σ (t) ∈ {0, 1}. (3)

Our interest in this paper is when G(s) is symmetric for two
principal reasons.

(i) Symmetric systems: First, symmetric transfer function
matrices are ubiquitous in the study of electrical systems (Helmke
et al., 2006; Semlyen & Gustavsen, 2009), and in systems with
collocated sensors and actuators (Yang & Qiu, 2002). They are also
found in the study of chemical process plants (Shinskey, 1984). The
study of switched systems is important as symmetry of a transfer
function matrix is often preserved under symmetric feedback.
For example, consider the state space realization of a symmetric
transfer function

Σ :


ẋ = Ax + Bu
y = Cx. (4)

Suppose now that intermittent output feedback of the form u =

−σ(t)Ky with σ(t) ∈ {0, 1} and K a symmetric matrix is used to
control the plant. Thus the closed loop system is of the form of ẋ =

(A − σ(t)BKC) x which is in the form of (3) if K is invertible. Such
a scenario may readily occur whenever communication through
which feedback is transmitted is unreliable. As is well known the
stability of this system is not guaranteed, unless one can show the
existence of a Lyapunov function.

(ii) Correspondence classes: A secondmotivation for the study
of this system class comes from the definition of thematrices A1 =

A and A2 = A − BD−1C . Many switched systems may be put in the
form of this class by an appropriate choice of matrices B, C , and D.
Thus, if we can establish results for the class of switched systems
(3), then the same results can be used to determine quadratic
stability of amuchwider class of switched systems. Note, precisely
which class of systems is isomorphic to the class considered in this
paper is characterized by the following lemma (the proof is given
in the Appendix).

Lemma 1. Consider two matrices A1 ∈ Rn×n and A2 ∈ Rn×n. A suffi-
cient condition for the existence of realmatrices A, B, C, andD = DT >
0 which satisfy A1 = A, A2 = A − BD−1C, and G(s) = GT (s) = C
(sI − A)−1B + D is that the two matrices

E1 := I ⊗ A1 − A1 ⊗ I and
E2 := I ⊗ A2 − A2 ⊗ I (5)

share a common eigenvector corresponding to a zero eigenvalue, say
vec(Y ) = [y11 . . . yn1 y12 . . . yn2 . . . y1n . . . ynn]T , such that Y is
symmetric and invertible, and (A1 − A2)Y is positive semi-definite.
Furthermore, if (A, B, C,D) is a minimal realization of G(s), then this
sufficient condition is also necessary.

3. Definitions and preliminary results

In this sectionwepresent several general results anddefinitions
that are useful in proving the principal result of this note.

(i) Strict positive realness: An m × m rational transfer function
matrixG(s) is said to be strictly positive real (SPR) if there exists
a real scalarα > 0 such thatG(s) is analytic for Re(s) ≥ −α and

G(jω − α) + GT (−jω − α) ≥ 0, ∀ω ∈ R; (6)

see Corless and Shorten (2010) and Zhou, Doyle, and Glover
(1996). The following characterization, inspired principally
by Narendra and Taylor (1973), provides a more convenient
description of a SPR transfer function matrix.

Lemma 2 (See Corless & Shorten, 2010). Suppose A is Hurwitz. Then
the m×m rational transfer function matrix G(s) = C(sI −A)−1B+D
is strictly positive real if and only if

G(jω) + GT (−jω) > 0, ω ∈ R, (7)

lim
ω→∞

ω2(m−p) det(G(jω) + GT (−jω)) > 0, (8)

where p = rank(G(∞) + GT (∞)).

(ii) Kalman–Yakubovic–Popov lemma (KYP): A basic result in
systems theory is the KYP lemma. The KYP lemma gives
algebraic conditions for the existence of a certain type of
Lyapunov functions; see, e.g., Boyd, El Ghaoui, Feron, and
Balakrishnan (1994).

Lemma 3 (KYP Lemma, See Boyd et al., 1994). Let A be Hurwitz,
(A, B) be controllable, and (A, C) be observable. Then G(s) = C(sI −
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