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a b s t r a c t

This paper proposes a saturation-based switching anti-windup design for the enlargement of the domain
of attraction of a linear system subject to nested saturation. A nestedly saturated linear feedback is
expressed as a linear combination of a set of auxiliary linear feedbacks, which form a convex hull where
the nestedly saturated linear feedback resides. This set of auxiliary linear feedbacks is then partitioned
into several subsets. The auxiliary linear feedbacks in each of these subsets form a convex sub-hull of the
original convex hull.When the value of the nestedly saturated linear feedback falls into a convex sub-hull,
it can be expressed as a linear combination of the subset of all the auxiliary feedbacks that form the convex
sub-hull. A separate anti-windup gain is designed for each convex sub-hull by using a common quadratic
Lyapunov function and is implemented when the value of the nestedly saturated linear feedback falls
into this convex sub-hull. Simulation results indicate that such a saturation-based switching anti-windup
design has the ability to significantly enlarge the domain of attraction of the closed-loop system.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamical systems subject to nested saturation in their input
have received significant interest from control system researchers
due to their frequent occurrence in various engineering applica-
tions. As an example, control systems subject to simultaneous ac-
tuator magnitude and rate saturation in the input (Bateman & Lin,
2003; Berg, Hammett, Schwartz, & Banda, 1996; Nguyen & Jabbari,
2000; Tyan & Bernstein, 1997) can be modeled with nested satu-
ration. Works on the topic of stability and stabilization of linear
systems subject to nested saturation in the input have emerged in
a large number in the past two decades. In another example, non-
linear feedback laws of nested saturation type have been utilized
to achieve global asymptotic stabilization for linear systems sub-
ject to actuator saturation (Sussmann, Sontag, & Yang, 1994; Teel,
1992), while linear feedback has been proven unable to do this.
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If not taken into account in the design of the system, nested
saturation in general will degrade the performance of the system,
and may even cause the system to lose its stability. As a result,
properly handling nested saturation has been an important issue
in stability analysis and stabilization of linear systems subject to
nested saturation in the input. A popular approach to dealing with
nested saturation is to treat it as a sector nonlinearity (Tarbouriech,
Prieur, & Gomes da Silva, 2006;Wu& Soto, 2003). Based also on the
sector-based analysis of nested saturation, stability and thedomain
of attraction have been studied (Tarbouriech et al., 2006). Another
effective method for handling nested saturation is the linear dif-
ferential inclusion approach (Bateman & Lin, 2003; Fiacchini, Tar-
bouriech, & Prieur, 2012; Zhou, Zheng, & Duan, 2011), which puts
a nestedly saturated linear feedback inside a convex hull of a set
of auxiliary linear feedbacks. The linear differential inclusion ap-
proach, in general, is less conservative than the sector-based ap-
proach.

Anti-windup is an important approach to mitigating the ad-
verse effect of actuator saturation. Its objective is to recover as
much as possible the performance of the closed-loop system in
the absence of actuator saturation (Grimm et al., 2003; Wu & Soto,
2003; Zaccarian & Teel, 2004). An important performance to con-
sider in the anti-windup design is the size of the domain of attrac-
tion of the resulting closed-loop system (Cao, Lin, & Ward, 2002;
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Gomes da Silva & Tarbouriech, 2005; Li & Lin, 2013b; Lv & Lin,
2010). Gomes da Silva and Tarbouriech (2005) took the sector-
based approach and formulated the problem of designing an anti-
windup gain for the enlargement of the domain of attraction into
an optimization problem with linear matrix inequality (LMI) con-
straints. The convex hull representation of saturated linear feed-
backs was adopted by Cao et al. (2002), Li and Lin (2013b) and Lv
and Lin (2010) and iterative linear matrix inequality algorithms
were developed to compute the anti-windup gains. In particular,
a saturation-based switching anti-windup scheme was proposed
by Li and Lin (2013b) to obtain a significantly larger domain of at-
traction than those methods of Cao et al. (2002), Gomes da Silva
and Tarbouriech (2005) and Lv and Lin (2010). This anti-windup
design partitions the convex hull that represents the saturated
linear feedback into several convex sub-hulls, designs a separate
anti-windup gain for each convex sub-hull and switches among
the different anti-windup gains according to which convex sub-
hull the value of the saturated linear feedback falls into.

Following the idea of designing the saturation-based switching
anti-windup compensator to enlarge the domain of attraction of
a linear system subject to actuator saturation (Li & Lin, 2013b), in
this paper, we consider the same problem of designing saturation-
based switching anti-windup gains when the system is subject to
nested saturation, instead of single layer saturation, in the input.
The first contribution of this paper is to propose an improved con-
vex hull representation for a nestedly saturated linear feedback,
which has the same form as the existing representation (Fiacchini
et al., 2012; Zhou et al., 2011), but contains more decision vari-
ables. As a result, less conservative conditions can be established
to characterize the invariance of an ellipsoid as the estimate of the
domain of attraction. Second, we present a partitioning of the set
of auxiliary linear feedbacks that define the improved convex hull
into several subsets. The auxiliary linear feedbacks in each of these
subsets form a convex sub-hull of the improved convex hull. When
the value of the nestedly saturated linear feedback falls into a con-
vex sub-hull, it can be expressed as a linear combination of the
subset of all the auxiliary linear feedbacks that define the convex
sub-hull. A separate anti-windup gain is designed for each convex
sub-hull by using a common quadratic Lyapunov function and is
implementedwhen the value of the nestedly saturated linear feed-
back falls into this convex sub-hull. Numerical simulation will be
carried out to demonstrate that such a saturation-based switching
anti-windup design has the ability to result in a significantly larger
domain of attraction than the single anti-windup design.

The remaining part of our paper is organized as follows. In
Section 2, the problem to be studied in the paper is stated and
the improved convex hull representation of the nestedly saturated
linear feedback is proposed that reduces the conservativeness of
the existing treatments of nested saturation (Bateman & Lin, 2003;
Fiacchini et al., 2012; Zhou et al., 2011). Based on this new convex
hull representation of the nestedly saturated linear feedback law,
we will present the proposed saturation-based switching anti-
windup design in Section 3. Numerical examples are presented in
Section 4 to illustrate that significantly larger estimates of domain
of attraction can be obtained by using the proposed saturation-
based switching anti-windup compensator. Section 5 concludes
the paper.

We will use standard notation. Let sat : Rm
→ Rm denote

the vector valued standard saturation function, which is defined
as sat(u) = [sat(u1), sat(u2), . . . , sat(um)]T, sat(ui) = sgn(ui)
min{1, |ui|}. For an F ∈ Rm×n, let L(F) = {x ∈ Rn

: |fix|∞ ≤

1, i ∈ I[1,m]}, where fi represents the ith row of matrix F . We
note that L(F) represents the region in Rn where Fx does not satu-
rate. Also, for an integer mk, let Dk be the set of mk × mk diagonal
matrices whose diagonal elements are either 1 or 0. There are 2mk

elements in Dk. Suppose that these elements of Dk are labeled as

Dik , ik ∈ I[1, 2mk ]. Here and throughout this paper, for two inte-
gers l1 and l2, I[l1, l2] denotes the set of integers {l1, l1 +1, . . . , l2}.
Denote that D−

ik
= I − Dik . Clearly, D

−

ik
∈ Dk if Dik ∈ Dk. For a pos-

itive definite P ∈ Rn×n, E(P) := {x ∈ Rn
: xTPx ≤ 1}. For a square

matrix A,He(A) := AT
+ A.

2. A new convex hull representation of nested saturation and
the anti-windup design problem

2.1. Convex hull representation of a nestedly saturated linear
feedback

We first recall from Li and Lin (2013a) an alternative convex
hull representation of a saturated linear feedback law, which
generalizes a representation in Hu and Lin (2001).

Lemma 1. Let F ,Hi ∈ Rm×n, i ∈ I[1, 2m
]. For an x ∈ Rn, if

x ∈ L(Hi), i ∈ I[1, 2m
], then

sat(Fx) ∈ co{DiFx + D−

i Hix : i ∈ I[1, 2m
]}, (1)

where co stands for the convex hull.

Clearly, Lemma 1 will reduce to the related result in Hu and Lin
(2001) if we setHi = H for all i ∈ I[1, 2m

]. An equivalent treatment
of saturated linear feedbacks, not in the form of convex hull
representation, was earlier proposed by Alamo, Cepeda, and Limon
(2005), and other equivalent results can be found in Fiacchini et al.
(2012), Zhou (2013) and Zhou et al. (2011).

In this paper,we are concernedwith the following linear system
subject to nested saturation in the input:

ẋ = Ax + B1sat(F1x + B2sat(F2x
+ B3sat(F3x + · · · + Bqsat(Fqx)))), (2)

where A ∈ Rn×n, Bk ∈ Rmk−1×mk and Fk ∈ Rmk×n, k ∈ I[1, q],m0 =

n. Systems of this formwere originally considered by Bateman and
Lin (2003). Throughout the paper, we will number the saturation
functions from the outmost layer inward,with the outmost layer as
the first layer saturation function. Define a set of auxiliarymatrices
Hk(i1, i2, . . . , iq) ∈ Rmk×n, (i1, i2, . . . , iq) ∈ Π , where Π =

(I[1, 2m1 ] × [1, 2m2 ] × · · · × I[1, 2mq ]), for the kth layer saturation
function. For a fixed k, there are 2

q
r=1 mr such auxiliary matrices.

Following the approach to expressing the saturated linear feedback
on the convex hull of a group of auxiliary linear feedback laws, as
described in Lemma 1, we can establish the following lemma that
provides a similar treatment to nested saturation found in (2).

Lemma 2. For an x ∈ Rn, if x ∈ L(Hk(i1, i2, . . . , iq)), k ∈ I[1, q],
(i1, i2, . . . , iq) ∈ Π ,

sat(F1x + B2sat(F2x + B3sat(F3x + · · · + Bqsat(Fqx))))

∈ co


q

k=1


k−1
l=1

DilBl+1


DikFkx +

q
k=1


k−1
l=1

DilBl+1



×D−

ik
Hk(i1, i2, . . . , iq)x : (i1, i2, . . . , iq) ∈ Π


, (3)

where we have defined
0

l=1 DilBl+1 = I .

Proof. Let

v1 = F1x + B2sat(F2x + B3sat(F3x + · · · + Bqsat(Fqx))),
v2 = F2x + B3sat(F3x + · · · + Bqsat(Fqx)),
...

vq = Fqx.
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