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a b s t r a c t

In this paper, we consider robust system identification of FIR systems when both sparse outliers and
random noises are present. We reduce this problem of system identification to a sparse error correcting
problem using a Toeplitz structured real-numbered coding matrix and prove the performance guarantee.
Thresholds on the percentage of correctable errors for Toeplitz structuredmatrices are established.When
both outliers and observation noise are present, we have shown that the estimation error goes to 0
asymptotically as long as the probability density function for observation noise is not ‘‘vanishing’’ around
origin. No probabilistic assumptions are imposed on the outliers.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In a linear system identification setting, an unknown system
parameter vector x ∈ Rm is often observed through a Toeplitz
matrix H ∈ Rn×m (n ≥ m), namely

y = Hx =


u1 u0 · · · u−m+2
u2 u1 · · · u−m+3
...

...
. . .

...
un un−1 · · · u−m+n+1

 x, (1.1)

where H is a Toeplitz matrix with ui, − m + 2 ≤ i ≤ n, being
the system input sequence and y = (y1, y2, . . . , yn)T the system
output. In this paper, we denote this system input sequence by a
row vector h = (u−m+2, u−m+1, . . . , un).

In this paper, we consider system identification under finite
impulse response (FIR) models. Though applicable to control
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applications where FIR models are used, it is not as complete as
IIR models from a control point of view. However, identification
in the presence of outliers and random noises is not limited to
control applications and in fact routinely applied to many other
areas, e.g., signal processing and communication (Rauhut, 2009;
Sanandaji, Vincent, Poolla, &Wakin, 2012). Note in those areas, the
systems are dominantly and overwhelmingly FIR models and thus
the results derived in this paper can be readily applied.

If there is no interference or noise in the observation y, one
can then simply recover x from matrix inversion. However, in
applications, the observations y are corrupted by noises and a
few elements can be exposed to large-magnitude gross errors or
outliers. Mathematically, when both additive observation noise
and outliers are present, the observation y can be written as

y = Hx + e + w, (1.2)

where e is a sparse outlier vector with k ≪ n non-zero elements,
and w is a measurement noise vector with each element usually
being assumed to be i.i.d. random variables. We further assume
thatm is fixed and n can increase, which is often the case in system
identifications (Ljung, 1987).

If only random measurement errors are present, the least-
square solutions generally provide an asymptotically good esti-
mate. However, the least-square estimate breaks down in the
presence of outliers. Thus, it is necessary to protect the estimates
from both random noise and outliers. Research along this direc-
tion has attracted a significant amount of attention, for example,
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Bai, Cho, Tempo, andYe (2002), Ljung (1987), Rousseeuwand Leroy
(1987) and Söderström and Stoica (1989). An effective way is to vi-
sually inspect the residual plot and change the obviously erroneous
measurements ‘‘by hand’’ to an appropriately interpolated values
(Ljung, 1987). The approach does not however always work. The
need for human intervention, which prevents automatic/adaptive
implementation, is an additional shortcoming of the visual inspec-
tion of the residual plot as a means to account for the presence
of outliers. Another approach to deal with the outliers was the
idea of few violated constraints (Bai et al., 2002) in the setting of
the bounded error parameter estimation. The other two popular
methods in the statistical literature to deal with the outliers are
the least median squares and the least trimmed squares (Huber,
1981; Rousseeuw & Leroy, 1987). Instead of minimizing the sum
of the residual squares, the least median squares yield the small-
est value for the median of squared residuals computed from the
entire data set and the least trimmed squares try to minimize the
sum of squared residues over a subset of the given data. Both have
shown robustness against the outliers (Huber, 1981; Rousseeuw &
Leroy, 1987). The problem is their computational complexity. Both
algorithms are nonlinear and in fact combinatory in nature. This
limits their practical applications if n and/or m are not small or
even modest. The most popular way to deal with the outliers in
the statistical literature is the least absolute deviation estimate (ℓ1
minimization) which has been extensively studied (Candès & Ran-
dall, 2008; Candès & Tao, 2005; Chen, Bai, & Zao, 1990; Xu, Wang,
& Tang, 2011). Instead of searching for all the

 n
k


possibilities for

the locations of outliers, Candès and Randall (2008), Candès and
Tao (2005) and Chen et al. (1990) proposed to minimize the least
absolute deviation,

x̂ = argmin
ξ

∥y − Hξ∥1, (1.3)

where x̂ is an estimate of x. Under the assumption that the
error e + w is an i.i.d. random sequence with a common density
which has median zero and is continuous and positive in the
neighborhood of zero, the difference between the unknown x and
its estimate is asymptotically Gaussian of zero mean (Chen et al.,
1990). The problem is that the assumption of i.i.d. of median zero
on the unknown outliers is very restrictive and seldomly satisfied
in reality. We study the least absolute deviation estimator or ℓ1
minimization from the compressed sensing point of viewand show
that i.i.d. of median zero on the outliers are unnecessary. In fact
only the number of outliers relative to the total number of data
length plays a role.

Recovering signals from outliers or errors have been studied
(Candès & Randall, 2008; Candès & Tao, 2005; Xu & Hassibi, 2011;
Xu et al., 2011). In their setting, each element of the (n − m) × n
matrix A such that AH = 0, is assumed to be i.i.d. random variables
following a certain distribution, for example, Gaussian distribution
or Bernoulli distribution. These types of matrices have been shown
to obey certain conditions such as restricted isometry conditions
(Candès & Randall, 2008) so that (1.3) can correctly recover xwhen
there are only outliers present; and can recover x approximately
when both outliers and measurement noise exist. However, in the
system identification problem, H has a natural Toeplitz structure
and the elements ofH are not independent but correlated. The nat-
ural question is whether (1.3) also provides performance guaran-
tee for recovering x with a Toeplitz matrix. We provide a positive
answer in this paper. The main contribution of this paper is the es-
tablishment of the performance guarantee of Toeplitz structured
matrices in parameter estimation in the presence of both outliers
and random noises.

With the development of compressed sensing theory in recent
years, the role of ℓ1 regularization has been studied in system
identification (Chen, Gu, & Hero, 2009; Kopsinis, Slavakis, &

Theodoridis, 2011; Rauhut, 2009; Romberg, 2009; Sanandaji et al.,
2012). In these works, system parameters are often assumed
to be sparse, and then ℓ1 regularization can be used to reduce
the number of needed samples for system identification. This
paper instead considers system identification under sparse outliers
without requiring the system state to be sparse. We would like to
point out that there is a well known duality between compressed
sensing (Donoho, 2006; Donoho & Tanner, 2005) and sparse error
detection (Candès & Randall, 2008; Candès & Tao, 2005): the
null space of sensing matrices in compressed sensing corresponds
to the tall matrix H in sparse error corrections. Toeplitz and
circulant matrices have been studied in compressed sensing in
several papers (Rauhut, 2009; Romberg, 2009). In these papers,
it has been shown that Toeplitz matrices are good for recovering
sparse vectors from undersampled measurements. In contrast, in
our model, the signal itself is not sparse and the linear system
involved is overdetermined rather underdetermined. Also, the null
space of a Toeplitz matrix does not necessarily correspond to
another Toeplitz matrix. Thus, the problem studied in this paper
is essentially different from those studied by Rauhut (2009) and
Romberg (2009).

The rest of this paper is organized as follows. In Section 2, we
derive the convergence results when both outliers and random
noises are present. In Section 3, we derive the worst-case
performance bounds on the number of outliers in ℓ1 minimization
when only outliers are present. In Section 4, we extend our results
to non-Gaussian inputs in system identification. In Section 5, we
provide numerical results and Section 6 concludes the paper by
discussing extensions and future directions.

2. Average-case performance bounds: with both outliers and
observation noises

We consider the case when both outliers and random observa-
tion errors are present and show that, under mild conditions, the
identification error ∥x̂ − x∥2 goes to 0, where x̂ is the solution to
(1.3).

Theorem 2.1. Let m be a fixed positive integer and H be an n × m
Toeplitz matrix (m < n) in (1.1) with each element ui, − m + 2 ≤

i ≤ n, being i.i.d. N(0, 1) Gaussian random variables. Suppose

y = Hx + e + w,

where e is a sparse vector with k ≤ βn non-zero elements (β < 1 is
a constant) and w is the observation noise vector. For any constant
t > 0, we assume that, with probability 1 as n → ∞, at least α(t)n
(where α(t) > 0 is a constant depending on t) elements inw+ e are
no bigger than t in amplitude.

Then ∥x̂ − x∥2 → 0 in probability as n → ∞, where x̂ is the
solution to (1.3).

We remark that, in Theorem 2.1, the condition on the unknown
outlier vector is merely β < 1, and the condition on the random
noisew is weaker than the usual condition of having i.i.d. elements
with median 0 (Chen et al., 1990). In fact, if w is independent
from e, and the elements ofw are i.i.d. random variables following
a distribution which is not ‘‘vanishing’’ in an arbitrarily small
region around 0 (namely the cumulative distribution function F(t)
satisfies that F(t) − F(−t) > 0 for any t > 0). Note that the
probability density function f (t) is allowed to be 0, however, the
conditions in Theorem2.1will be satisfied. To see that, first observe
that (1 − β)n elements of the outlier vector are zero. If elements
of w are i.i.d. following a probability density function f (s) that is
not ‘‘vanishing’’ around s = 0, with probability converging to one
as n → ∞, at least [F(t) − F(−t)](1 − β)(1 − ϵ)n = α(t)n
elements of the vector e + w are no bigger than t , where ϵ > 0
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