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In this paper we consider the problem of global asymptotic stabilization with prescribed local behavior.
We show that this problem can be formulated in terms of control Lyapunov functions. Moreover, we show
that if the local control law has been synthesized employing an LQ approach, then the associated Lyapunov
function can be seen as the value function of an optimal problem with some specific local properties. We
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1. Introduction

The synthesis of a stabilizing control law for systems described
by nonlinear differential equations has been the subject of great
interest by the nonlinear control community during the last
three decades. Depending on the structure of the model, some
techniques are now available to synthesize control laws ensuring
global and asymptotic stabilization of the equilibrium point.

For instance, we can refer to the popular backstepping approach
(see Andrieu & Praly, 2008, Krstic, Kanellakopoulos, & Kokotovic,
1995 and references therein), or the forwarding approach (see
Jankovic, Sepulchre, & Kokotovic, 1996, Mazenc & Praly, 1996 and
Praly, Ortega, & Kaliora, 2002) and some others based on energy
considerations or dissipativity properties (see Kokotovi¢ & Arcak,
2001 for a survey of the available approaches).

Although the global asymptotic stability of the steady state can
be achieved in some specific cases, it remains difficult to address in
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the same control objective performances issues of a nonlinear sys-
tem in a closed loop. However, when the first order approximation
of the non-linear model is considered, some performances aspects
can be addressed by using linear optimal control techniques (using
LQ controller for instance).

Hence, it is interesting to raise the question of synthesizing a
nonlinear control law which guarantees the global asymptotic sta-
bility of the origin while ensuring a prescribed local linear behav-
ior. For instance, this problem has been addressed by Ezal, Pan, and
Kokotovic (2000). In this paper local optimal control laws are de-
signed for systems which admit the existence of a backstepping.

In the present paper we consider this problem in a general
manner. In a Section 1 we will motivate this control problem and
we will consider a first strategy based on the design of a uniting
control Lyapunov function. We will show that this is related to
an equivalent problem which is the design of a control Lyapunov
function with a specific property on the quadratic approximation
around the origin. In the second part of this paper, we will consider
the case in which the prescribed local behavior is an optimal LQ
controller. In this framework, we investigate what type of perfor-
mances is achieved by the control solution to the stabilization with
prescribed local behavior. In the third part we consider two specific
classes of systems and show how the control with prescribed local
behavior can be solved. With our new context we revisit partially
results obtained by Ezal et al. (2000). Finally in the fourth part of the
paper, we consider a specific control problem which is the orbital
transfer problem. Employing the Lyapunov approach of Kellett and
Praly (2004) we exhibit a class of costs for which the stabilization
with local optimality can be achieved.
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2. Stabilization with prescribed local behavior

To present the problem under consideration, we introduce a
general controlled nonlinear system described by the following
ordinary differential equation:

X = (X, u), (1

with the state X inR" and @ : R" x R — R"isa C! function such
that @ (0, 0) = 0 and u in R is a control input. For this system, we
can introduce the two matrices A in R"™" and B in R"*? describing
its first order approximation: A = %(0, 0),B = %(0, 0). All
along the paper hidden in our assumptions, the couple (A, B) is
assumed to be stabilizable.

For system (1), the problem we intend to solve can be described
as follows:
Global asymptotic stabilization with prescribed local behavior:
Let a linear state feedback law u = K,X with K, in RP*" which
stabilizes the first order approximation of system (1) (i.e. A+BK, is
Hurwitz) be given. We are looking for a stabilizing control law u =
o (X), with @, : R" — RP, a locally Lipschitz map differentiable
at 0 such that:

(1) The origin of the closed-loop system X = @ (X, ao(X)) is
globally and asymptotically stable;

(2) The first order approximation of the control law «, satisfies the
following equality.
da,
X

0) = K,. (2)

This problem has already been addressed in the literature. For
instance, it is the topic of the papers by Benachour, Andrieu, Praly,
and Hammouri (2011), Ezal et al. (2000), Sahnoun, Andrieu, and
Nadri (2012). Note moreover that this subject can be related to the
problem of uniting a local and a global control law as introduced
by Teel and Kapoor (1997) (see also Prieur, 2001).

In this paper, we restrict our attention to the particular case
in which the system is input affine. More precisely we consider
systems in the form

X = a(X) + b(X)u, (3)

with the two C! functionsa : R" — R"and b : R" — R™P. In this
case we get A = ;—;(0) and B = b(0).

Employing the tools developed by Andrieu and Prieur (2010) it
is possible to show that merging control Lyapunov function may
solve the problem of stabilization with prescribed local behavior.
In the following, we show that working with the control Lyapunov
function is indeed equivalent to address this problem.

Theorem 1. Given a linear state feedback law u = K,X with K, in
RP*"™ which stabilizes the first order approximation of system (3). The
following two statements are equivalent.

(1) There exists a locally Lipschitz function o, : R" — RP solution
to the global asymptotic stabilization with prescribed local
behavior problem.

(2) There exists a C? proper, positive definite function V : R" — R,
such that the following two properties are satisfied.

o If we denote’ P = %H(V)(O), then P is a positive definite
matrix. Moreover this inequality holds.
(A + BK,)'P + P(A + BK,) < 0; (4)

2 In the following, given a C? function V : R" — R, the notation H(V)(X) is the
Hessian matrix in R"*" evaluated at X of the function V. More precisely, it is the

matrix (H(V));;(X) = a‘)g,zieyxj(x)'

e Artstein condition is satisfied. More precisely, this implication
holds for all X in R" \ {0},
LyV(X) =0= L,V(X) <0, (5)
where L,V (-) = a0V /3 X - b(-), and L,V is analogously defined.

Proof. (1) = (2) The proof of this part of the theorem is based on
recent results obtained in Andrieu and Prieur (2010). Indeed, the
design of the function V is obtained from the uniting of a quadratic
local control Lyapunov function (denoted V) and a global control
Lyapunov function (denoted V,,) obtained employing a converse
Lyapunov theorem.

First of all, employing the converse Lyapunov theorem of
Kurzweil (1956), there exists a C* function V, : R" — R, such
that 3% (%) [a(X) + b(X)ae(X)] < 0, V X # 0.0n the other
hand, A + BK, being Hurwitz, there exists a matrix P such that
the algebraic Lyapunov inequality (4) is satisfied. Let V, be the
quadratic function Vo(X) = X'PX. Due to the fact that K, sat-
isfies Eq. (2) it yields that the matrix A + BK, is the first order
approximation of the system (3) with the control law u = o, (x).
Consequently, it implies that there exists a positive real number
€1 such that %(x)[a(x) 4+ b(X)e(X)] < 0, VO < [X] < €.
This implies that the time derivative of the two control Lyapunov
functions Vg and V., can be made negative definite with the same
control law in a neighborhood of the origin. Employing Andrieu
and Prieur (2010, Theorem 2.1), it yields the existence of a func-
tion V : R" — R, which is C? at the origin and a positive real
number €, such that the following two properties hold.

e Forall X in R" \ {0}, %(x)[a(x) + b(X)a,(X)] < 0. Hence,
Eq. (5) is satisfied;

e For all X in R" such that |X| < €, we have V(X) = Vu(X).
Consequently #(V)(0) = 2P.

(2) = (1) Let Q be the positive definite matrix defined as, Q =
—(A 4+ BK,)'P + P(A + BK,). Employing the local approximation
of the Lyapunov function V, it is possible to find rq such that

LV (X) + LV (X)KX <0, VX e {0 < V(X) < rol.

This implies that the control Lyapunov function V satisfies the
small control property (see Sontag, 1989). Hence, we get the exis-
tence of a control law a, (given by Sontag’s universal formulae in-
troduced by Sontag, 1989) such that this one satisfies for all X # 0

LaV(X) + LV () aao(X) < 0.

A solution to the stabilization with prescribed local problem can
be given by the control law a,(X) = p(V(X))as(X) + (1 —
p(V(X)))K, X where p : Ry — [0, 1]is any locally Lipschitz func-

S

o
tion such that p(s) = {? = 3 Note that with this selection, it
,  S=Tp.

yields that equality (2) holds. Moreover, we have along the solution
of the system (3)

V() lumao) = PV XNV (X)uman
+ 1= p(VEO)V(X) lu=k,x < 0.
Hence, we get the result. O

From this theorem, we see that looking for a global control Lya-
punov function locally assigned by the prescribed local behavior
and looking for the controller itself are equivalent problems.

3. Locally optimal and globally inverse optimal control laws

If one wants to guarantee a specific behavior on the closed loop
system, one might want to find a control law which minimizes a
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