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a b s t r a c t

Boolean control networks (BCNs) are discrete-time dynamical systems with Boolean state-variables and
inputs that are interconnected via Boolean functions. BCNs are recently attracting considerable interest
as computational models for genetic and cellular networks with exogenous inputs.

The topological entropy of a BCN with m inputs is a nonnegative real number in the interval
[0,m log 2]. Roughly speaking, a larger topological entropymeans that asymptotically the control is ‘‘more
powerful’’. We derive a necessary and sufficient condition for a BCN to have the maximal possible topo-
logical entropy. Our condition is stated in the framework of Cheng’s algebraic state-space representation
of BCNs. This means that verifying this condition incurs an exponential time-complexity. We also show
that the problem of determining whether a BCN with n state variables and m = n inputs has a maxi-
mum topological entropy is NP-hard, suggesting that this problem cannot be solved in general using a
polynomial-time algorithm.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Boolean networks (BNs) are useful modeling tools for dynami-
cal systems whose state-variables can attain two possible values.
Examples range from artificial neural networks with ON/OFF type
neurons (see, e.g. Hassoun, 1995), to models for the emergence
of social consensus between simple agents that can either agree
or disagree with a certain opinion (see, e.g. Green, Leishman, &
Sadedin, 2007).

There is a growing interest inmodeling biological systems using
BNs and, in particular, genetic regulation networks, where each
gene can be either expressed (ON) or not expressed (OFF) (Chaos
et al., 2006; Kauffman, Peterson, Samuelsson, & Troein, 2003; Li,
Long, Lu, Ouyang, & Tang, 2004). Although being highly abstract,
BNs seem to capture the real behavior of gene-regulatory processes
well (Bornholdt, 2008; Hopfensitz et al., 2012).

Kauffman (1969) has studied the order and stability of large,
randomly constructednets of suchbinary genes. He also related the
behavior of these randomnets to various cellular control processes,
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including cell differentiation, by associating every possible cell
type with a stable attractor of the BN. This work has stimulated the
analysis of large-scale BNs using tools from the theory of complex
systems and statistical physics (see, e.g. Albert & Barabasi, 2000;
Aldana, 2003; Drossel, Mihaljev, & Greil, 2005; Kauffman, 1993).

BNs have also been used to model various cellular processes in-
cluding the complex cellular signaling network controlling stom-
atal closure in plants (Li, Assmann, & Albert, 2006), the molecular
pathway between two neurotransmitter systems, the dopamine
and glutamate receptors (Gupta, Bisht, Kukreti, Jain, & Brah-
machari, 2007), carcinogenesis, and the effects of therapeutic in-
tervention (Szallasi & Liang, 1998).

BNs with (Boolean) inputs are referred to as Boolean control
networks (BCNs). BCNs have beenused tomodel biological systems
with exogenous inputs. For example, Faure, Naldi, Chaouiya, and
Thieffry (2006) (see also Faure & Thieffry, 2009) have developed a
BCNmodel for the core network regulating themammalian cell cy-
cle. Here the nine state-variables represent the activity/inactivity
of nine different proteins: Rb, E2F, CycE, CycA, p27, Cdc20, Cdh1,
UbcH10, and CycB, and the single Boolean input represents the ac-
tivity/inactivity of CycD in the cell.

Cheng, Qi, and Li (2011) have developed an algebraic state-space
representation (ASSR) of BCNs (and, in particular, of BNs). This rep-
resentation has proved useful for studying control-theoretic ques-
tions, as they reduce a BCN to a positive linear switched system
whose input, state and output variables are canonical vectors. Top-
ics that have been analyzed using the ASSR include optimal control
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(Laschov&Margaliot, 2011, 2013; Zhao, Li, & Cheng, 2011), control-
lability and observability (Cheng & Qi, 2009; Fornasini & Valcher,
2013; Laschov & Margaliot, 2012; Li & Sun, 2011), identification
(Cheng & Zhao, 2011), disturbance decoupling (Cheng, 2011), and
more.

The ASSR of a BN with n state-variables and m inputs includes
a 2n

× 2n+m matrix. Thus, any algorithm based on the ASSR has an
exponential time complexity. A natural question is whether better
algorithms exist. Zhao (2005) has shown that determiningwhether
a BN has a fixed point is NP-complete. Akutsu, Hayashida, Ching,
and Ng (2007) have shown that several control problems for BCNs
are NP-hard. Laschov, Margaliot, and Even (2013) have shown that
the observability problem for BCNs is also NP-hard. Thus, unless
P = NP , these analysis problems for BCNs cannot be solved in
polynomial time.

Hochma, Margaliot, Fornasini, and Valcher (2013) noted the
connection between BCNs and symbolic dynamics (SD). The main
object of study in SD is shift spaces (Lind & Marcus, 1995). The set
of all possible trajectories of a BCN is a shift space, so many results
and analysis tools from SD are immediately applicable to BCNs. In
particular, Hochma et al. (2013) noted that an important notion
from SD called topological entropy can be defined for BCNs, and
computed using the Perron root of a certain non-negative matrix
that appears in the ASSR of a BCN. The topological entropy of a BCN
withn state-variables andm inputs (we always assume thatm ≤ n)
is a number in the range [0,m log 2] that indicates how ‘‘rich’’ the
control is.

In this paper, we derive a necessary and sufficient condition
for a BCN to have a maximal topological entropy. This condition
is stated in terms of the ASSR. We also show that for a BCN with
n state variables and m = n inputs the problem of determining
whether the BCN hasmaximal topological entropy is NP-hard. This
implies that unless P = NP , there does not exist an algorithmwith
polynomial time complexity that solves this problem.

The remainder of this note is organized as follows. Section 2 re-
views BNs, BCNs, and some definitions and tools from SD. Section 3
includes our main results. Section 4 concludes and describes some
possible directions for further research.

2. Preliminaries

We begin by reviewing BCNs and their ASSRs. Let S := {0, 1}. A
BCN is a discrete-time logical dynamical system

X1(k + 1) = f1(X1(k), . . . , Xn(k),U1(k), . . . ,Um(k)),

... (1)
Xn(k + 1) = fn(X1(k), . . . , Xn(k),U1(k), . . . ,Um(k)),

where Xi,Ui ∈ S, and each fi is a Boolean function, i.e. fi : Sn+m
→

S. It is useful to write this in vector form as

X(k + 1) = f (X(k),U(k)). (2)

A BN is a BCN without inputs, i.e.

X(k + 1) = f (X(k)). (3)

Cheng et al. (2011) have developed an algebraic state-space repre-
sentation of BCNs using the semi-tensor product of matrices. This
topic has been described in many publications, so we review it
briefly.

Let Ik,k denote the k × k identity matrix, and let eik ∈ Sk denote
the ith canonical vector of size k, i.e., the ith column of Ik,k. Let
Lk×n

⊂ Sk×n denote the set of k × n matrices whose columns are
all canonical vectors.

Using the semi-tensor product (Cheng et al., 2011) of matrices,
denoted by n, the state-vector


X1(k) · · · Xn(k)

′ of a BCN is

converted into a state-vector x(k) ∈ L2n . Basically, x(k) is the set
of all the possible minterms of the Xi(k)s, so x(k) is a canonical
vector for all k. Similarly, the input vector


U1(k) · · · Um(k)

′

is converted into a vector u(k) ∈ L2m . Since any Boolean function
can be represented as a sum of minterms, the dynamics (1) can be
represented in the bilinear form

x(k + 1) = L n u(k) n x(k). (4)

The matrix L ∈ L2n×2n+m
is called the transition matrix of the BCN.

Algorithms for converting a BCN from the form (2) to its ASSR
(4), and vice versa, may be found in Cheng et al. (2011). Similarly,
the BN (3) may be represented in the ASSR

x(k + 1) = Lx(k), (5)

where x(k) ∈ L2n and L ∈ L2n×2n .
The fact that a BNmay be represented in a linear form using the

vector of minterms has been known for a long time (see, e.g., Cull,
1971, 1975), but the ASSR provides an explicit algebraic form that
is particularly suitable for control-theoretic analysis.

Given the ASSR (5) of a BN, we can associate with it a directed
graph G = G(V , E), where V = {e12n , . . . , e

2n
2n}, and there is a

directed edge from vertex ej2n to vertex ei2n if and only if [L]ij = 1. In
other words, there is a directed edge from vertex ej2n to vertex ei2n
if and only if x(k) = ej2n implies that x(k + 1) = ei2n .

We now briefly review some results from Hochma et al. (2013)
derived by relating BCNs and symbolic dynamics (SD) (Lind &
Marcus, 1995). SD has evolved from analyzing general dynamical
systems by discretizing the state-space into finitely many pieces,
each labeled by a different symbol. An orbit of the dynamical
system is then transformed into a symbolic orbit composed of the
sequence of symbols corresponding to the successive pieces visited
by the orbit. The original evolution is transformed into a symbolic
dynamics given by a shift operator σ . The main object of study in
SD is shift spaces.

Given the BCN (2), define its set of state-trajectories of length j by

A
j
S := {X(0)X(1) · · · X(j − 1) :

X(k + 1) = f (X(k),U(k)), U(k) ∈ Sm, X(0) ∈ Sn
},

i.e., the state trajectories of length j over all possible controls and
initial conditions. Note that for a BN this becomes

{X(0) · · · X(j − 1) : X(k + 1) = f (X(k)), X(0) ∈ Sn
}.

The topological entropy of a BCN is

hS := lim
j→∞

1
j
log |A

j
S |. (6)

In other words, hS is the asymptotic ‘‘growth rate’’ of the number
of state-sequences of a given length. A higher hS corresponds to
a ‘‘richer’’ control in the sense that asymptotically more state-
sequences can be produced.

Example 1. Consider the BCN:

X1(k + 1) = U1(k),
X2(k + 1) = U2(k),
...

Xm(k + 1) = Um(k),
Xm+1(k + 1) = f1(X1(k), . . . , Xn(k)), (7)
Xm+2(k + 1) = f2(X1(k), . . . , Xn(k)),
...

Xn(k + 1) = fn−m(X1(k), . . . , Xn(k)).
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