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a b s t r a c t

This paper examines stochastic stability of switched dynamics in continuous time. The time evolution
of the so called continuous state is at all times, determined by the dynamics indexed by the switching
process or discrete state. The main contribution of this paper appears as stochastic stability results for
switched dynamics with semi-Markovian switching. The notion of moment stability in the wide sense
(MSWS) is applied as a generalization of ϵ-moment stability. A sufficient criterion for MSWS is presented
for the above class of systems, where each subsystem is assumed to be characterized by a Lyapunov
function candidate together with an associated growth rate equation. For the set of Lyapunov functions, a
compatibility criterion is assumed to be fulfilled, bounding the ratio between pairs of Lyapunov functions.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Randomly Switched Systems (RSS) denote a class of systems
in which system state evolves in a continuous state space in con-
tinuous or discrete time according to one system among a finite
set of dynamics. RSS have been suggested as a suitable modeling
paradigm in diverse areas such as finance, population dynamics,
manufacturing, and fault-tolerant control (Cassandras & Lygeros,
2007). Stability of Markov Jump Linear Systems (MJLS), is stud-
ied in Bolzern, Colaneri, and De Nicolao (2006), Feng, Loparo, Ji,
and Chizeck (1992) and Tanelli, Bolzern, and Colaneri (2010), as
a special case of RSS in which dynamics are given by ordinary lin-
ear differential equations, and the switching process is a continu-
ous time Markov chain with a discrete state space. Stability in the
more general case of Switched Diffusion Processes (SDP), where
process noise is represented through a Wiener process, is stud-
ied in Yuan and Mao (2003). In Leth, Schioler, Gholami, and Coc-
quempot (2013) the concept of moment stability in the wide sense
(MSWS), which avoids any reference to stochastic convergence
properties, is applied to SDP. We adopt in this paper the MSWS
definition of Leth et al. (2013). MSWS relates directly to ϵ-moment
stability and specifically to mean square stability for ϵ = 2. More
indirectly the MSWS definition as well as the Noise to State
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Stability of Mateos and Cortes (2013) may be seen as the target
property for the Noise to State Lyapunov function (ns-lf) of Deng,
Krstic, and Williams (2001). In Leth et al. (2013) continuous time
Markovian switching is assumed. In this paper switching is allowed
to be semi-Markovian, however no process noise is present. The
extension to semi-Markov processes significantly extends the
validity of results within the aforementioned application areas,
e.g. population dynamics, error prone systems, etc. In Shaikhet
(2011) appears the definition (9.1) uniformly mean square bounded.
We may say that MSWS is a generalization of that to a broader
class than quadratic statistics. The results obtained here are dis-
tinguished from Tanelli et al. (2010) by allowing nonlinearities
and generalizing to semi-Markovian switching. Semi-Markovian
switching is studied in Mariton (1989), where sojourn times are
approximated by higher order Markovian models, whereas mean
square stability of semi-Markovian Jump linear systems is stud-
ied in Huang and Shi (2011) and Schwartz and Haddad (2003)
through rate bounding. In this paper we study generally the ϵ-
moment stability of semi-Markovian Jump (non)Linear Systems
without any reference to rate bounds or monotony properties as
in Schwartz and Haddad (2003). The section following this intro-
ductionprovides themathematical prerequisites andprincipal def-
initions. This is followed by the analytical results section, in which
the main result is presented. Finally, conclusions and discussions
are provided along with suggestions for future research.

2. System definition

Throughout, we let (x, σ ) denote a continuous-time stochastic
process on a probability space (Ω, F , P) with values in the state
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space Rn
× D where D = {1, . . . ,M}, i.e. (x, σ ) : Ω × R+ →

Rn
× D . To simplify notation, we generally write x(t) and σ(t) in

place of x(·, t) and σ(·, t), respectively. The pair (x, σ ) is referred
to as the state, x as the continuous state, and σ as the discrete
state or switching process. Moreover, we assume throughout that
σ is a right continuous semi-Markov process. For continuous time,
the evaluation of x is based on system dynamics in the shape of
an Ordinary Differential Equation (ODE). More precisely, for each
discrete state, d ∈ D an ODE is defined

d
dt

x(t) = fd(x(t)) (1)

where f : Rn
×D → Rn is an appropriatemapping satisfying suit-

able regularity conditions to ensure unique continuous solutions.
The overall switched dynamics may therefore be written as

d
dt

x(t) = fσ(t)(x(t)). (2)

We say that a functional V : Rn
→ R+ is a Lyapunov function (can-

didate) if it is twice continuously differentiable, and V−1([0, C])
are compact sets for all C ≥ 0. For each d ∈ D , it is assumed that
there exist a real number λd and a Lyapunov function candidate
Vd : Rn

→ R+ such that

∇Vd(x)fd(x) ≤ λdVd(x), (3)

with∇Vd denoting the gradient of Vd. For λd < 0, inequality (3) en-
sures stability of (1). We generally do not assume λd < 0, since we
allow instability for a subset of discrete states. We shall assume, as
in Yang, Jiang, and Cocquempot (2009), that the Lyapunov function
candidates Vd are compatible, i.e. a real number µ > 1 exists such
that

Vd(x) ≤ µVb(x), ∀d, b ∈ D, ∀x ∈ Rn. (4)

The switching process σ governs the choice of smooth dynamics
for the continuous state and is assumed to be a right continuous
semi-Markovprocesswith transition instants {tj}. Let τn = tn−tn−1
and σn = σ(tn) then, by the semi-Markov property, the discrete
time process {σn, τn} = {σ(tn), τn} is a so called Markovian re-
newal process, i.e. let {Qn} be its natural filtration then

P((σn+k, τn+k) ∈ A|Qn) = P((σn+k, τn+k) ∈ A|σn). (5)

Under time invariance we may therefore characterize the process
completely by its one step conditional probability P((σn+1, τn+1) ∈

A|σn). Next we define the conditional sojourn time distribution
ms,s′ given present and future state through

ms,s′(A) = P(τn+1 ∈ A|σn+1 = s′, σn = s)

= P(τn+1 ∈ A, σn+1 = s′|σn = s)/Ps,s′ , (6)

for all s, s′ ∈ D and with Ps,s′ = P(σn+1 = s′|σn = s).

3. Stochastic stability

Stability properties of x(t) need to be established in the context
of stochastic stability, inwhich a variety of inter-related definitions
exist. Most definitions are based on associated definitions of
convergence such as convergence in probability, convergence in
mean/moment and almost sure convergence.

We define the system (2) to be moment-stable in the wide sense
(MSWS) if there exist 0 ≤ K < ∞, 0 < ϵ < 1 and Lyapunov
function candidates {Vd | d ∈ D} such that:

E[V ϵ
σ (t)(x(t))] ≤ K , ∀t ≥ 0 (7)

whenever E[V ϵ
σ (0)(x(0))] < ∞.

4. Stability analysis

Stability analysis is based on the definition of a dominating pro-
cess, U , for which stability criteria are given. Since U is an approxi-
mation from above, the presented criteria can atmost be sufficient.

Now in Leth et al. (2013) it is shown that

Vσ(t)(x(t)) ≤ U(t), ∀t ≥ 0 (8)

where, for a given 0 < ϵ < 1, the process U is defined by

d
dt

U(t) = ϵλdiU(t), t ∈ [ti, ti+1),

U(ti+1) = µϵU(t−i+1),

U(0) = V ϵ
σ̄ (0)(x̄)

with {tj} the sequence of transition instants of a particular realiza-
tion σ̄ of the switching process σ with σ̄ (t) = di for t ∈ [ti, ti+1).

By (8) we therefore obtain

E[U(t)] ≥ E[V ϵ
σ (t)(x(t))], (9)

so that bounding E[U(t)] globally leads toMSWS. NowdefineUn =

U(tn), then by definition

Un+1 = µϵUn exp(ϵλdnτn+1).

By construction, {Un} is adapted to {Qn}, so from (5) the following
independence relation holds true:

P(τn+1 ∈ A, σn+1 = s′|σn = s,Un ∈ B)

= P(τn+1 ∈ A, σn+1 = s′|σn = s) = ms,s′(A)Ps,s′ . (10)

Let mn,s denote the state conditional distribution of Un, then (10)
allows us to write

P(τn+1 ∈ A, σn+1 = s′, σn = s,Un ∈ B)

= ms,s′(A)Ps,s′mn,s(B)P(σn = s). (11)

For each d ∈ D define the processes γd(n) = Iσn=dU(n). Then

γs′(n + 1) = Iσn+1=s′

s∈D

Iσn=s µϵU(n) exp(ϵλsτn+1).

Taking expectation according to (11), and writing Ps = P(σn = s)

E[γs′(n + 1)] =


s∈D


µϵ exp(ϵλsτ) dms,s′(τ )Ps,s′


u dmn,s(u)Ps

= µϵ

s∈D

Ls,s′(ϵλs)Ps,s′ E[γs(n)] (12)

where Ls,s′ is the Laplace transform of the state dependent dis-
tributionms,s′ (moment generating function). For further develop-
ment Ls,s′(ϵλs) needs to be differentiable at ϵ = 0, which, e.g. is
fulfilled for exponential sojourn times and positive λs as well as for
finite expectation and negative λs.

The expectation dynamics (12)may bewrittenmore compactly
as

E[γ (n + 1)] = Λ(ϵ)E[γ (n)], (13)

where γ (n) is the M-dimensional vector with entries γs(n), and
Λ = Λ(ϵ) = µϵ


Ls,s′(ϵλs)Ps,s′


is the M × M matrix with row–

column index (s′, s).

4.1. Moment stability in the wide sense

Since by construction E[Un] =


d∈D E[γd(n)], boundedness
of γ (n) through (9) leads to a bounded E[V ϵ

σ (t)(x(t))]. Conditions
under which γ (n) has bounded mean will be given as a result of
Lemma 1.
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