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a b s t r a c t

Different components of a structure can have different damping characteristics, and that
affects the dynamic response of the overall system. Herein, we assume that damping has
a simple form only at a component level. That leads to a complex damping model at a
system level. A new method is introduced which identifies the component damping of a
structure. This method is applied to mistuned blisks in regions of low and high modal
density. The method incorporates reduced-order models, and remains accurate in the
presence of measurement noise. Results are shown for a mistuned blisk with varying
levels of measurement noise. The accuracy of damping identification is observed through
a forced response prediction and amplification factor study. Also, a discussion on the
effects of damping and stiffness mistuning on the maximum response is presented. Some
differences between component and modal damping are highlighted.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Wear or manufacturing processes or defects can cause slight variations in the mass or stiffness of a nominally cyclically
symmetric structure such as an integrally bladed disk (blisk). These variations (referred to as mistuning) can cause the
vibration energy to localize at certain regions of the structure resulting in larger than expected forced responses and
stresses. Therefore, these mistuned systems are susceptible to high cycle fatigue. One method to compensate for the effects
of mistuning is to apply damping coatings. However, Joshi et al. [1] found that the dynamics of the system can significantly
change due to variations in the thickness of the applied coating. To determine the damping characteristics of coatings,
a damping identification technique is needed which can determine the damping associated with individual components of a
mistuned blisk (before and after the coating is applied). Currently, damping identification relies on one of the several
common damping models, namely structural, viscous, and component (material) damping. In general, structural damping is
defined for a full system, while viscous damping is defined for individual system modes.

Most current damping identification techniques assume that damping has a certain form at a system level. For example,
the damping in complex structures is often assumed to be viscous, modal, or structural. Such assumptions provide accurate
results for structures with relatively simple geometries and low modal density. However, these approximations can be
cumbersome or inaccurate for structures with complex geometry and high modal density. For such systems, using a
component-oriented model can be more effective. In particular, component damping may correspond to a proportional or
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structural damping applied to individual components of a structure (i.e., each component has an associated material
damping). For instance, each blade of a blisk can be modeled as a separate component with an associated damping
parameter (which is to be identified). The resulting damping is only approximately modal, and the corresponding modal
damping values vary with different component damping properties. As a result, the component damping can represent the
physical attributes of the structure more closely and may require less effort than identifying the modal damping for a
structure with a moderate number of components and a large number of modes in the frequency range of interest.

While finite element modeling (FEM) methods incorporate component damping, most identification methods found in
literature are difficult or impossible to use to identify this type of damping from experimental data[2–20]. Statistical energy
analysis (SEA) is one method for determining component (subsystem) damping loss factors [21–27]. This method is useful
for high frequency ranges. However, this technique is limited as the damping is assumed to be known either from the power
injection method (PIM) [21–24], power modulation method [24], or a wave approach [25]. PIM and power modulation
techniques require measuring energy for all the components, and that can be difficult or impossible to gather accurately.
Also, wave theory applies to periodic systems, but mistuning destroys periodicity. Moreover, the SEA method can be time
consuming if there are many components [24]. In addition, the accuracy of the SEA method depends on the modal density
and the level of damping, as shown by Mace [27] and Yap et al. [26].

The work herein presents a novel component damping identification technique which can be applied to mistuned blisks
and uses certain reduced-order models (ROMs) in regions of low and/or high modal density. In addition, a method for
predicting the forced response of the system using ROMs is provided, and that can be used to decrease design time and
enable statistical analyses of component damping scenarios.

2. Equations of motion

In this section, equations of motion are developed beginning with Lagrange's equation (closely following [28]).
Component level damping is introduced to the disassembled system by including a Rayleigh damping function. Finally,
the system-level structural equation of motion incorporating component damping is obtained.

The kinetic and potential energies and the Rayleigh damping function for a structure can be expressed as

T ¼ 1
2
_qcT1 ~μc1 _qc1 þ 1

2
_qcT2 ~μc2 _qc2 þ⋯þ 1

2
_qcTn ~μcn _qcn ;

V ¼ 1
2 q

cT1 ~κc1qc1 þ 1
2 q

cT2 ~κc2qc2 þ⋯þ 1
2q

cTn ~κcnqcn ;

D¼ 1
2
_qcT1 ~ηc1 _qc1 þ 1

2
_qcT2 ~ηc2 _qc2 þ⋯þ 1

2
_qcTn ~ηcn _qcn ; ð1Þ

Nomenclature

αuv relative forcing coefficient for frequency pair u
and v

Φ matrix of the mistuned modes
Ψ matrix of the disassembled mistuned

system modes
p vector of the mistuned modal amplitudes
b reduced number of frequency pairs
S
ci maximum sensitivity for component i

S
ci
uv sensitivity of the target mistuned mode

β blade portion of sector
δΓci damping perturbation of component i
δκci stiffness perturbation matrix for component i
Δ disk portion of sector
Γm mean component damping
ω excitation frequency
κci stiffness matrix for component i obtained

using cyclic symmetry
Λi
CB diagonal matrix of the mistuned cantilevered

blade eigenvalues for blade i
Φci ;u vectors containing the portion of the uth

mistuned mode shapes corresponding to com-
ponent ci

r Lagrange multipliers
E constraint matrix
F non-conservative generalized force vector

I identity matrix
qci generalized coordinates
Q ci participation factors of mistuned cantilevered

blade i onto the tuned system modes
S synthesis matrix
X independent generalized coordinates
x harmonic response vector
~ηci damping matrix for component i
~κci stiffness matrix for component i
~μci mass matrix for component i
aug augmented matrix
n,u mistuned natural frequencies of modes u
u frequency u
a number of independent DOFs
b number of frequency pairs
ci component i
D Rayleigh damping function
e combined number of independent and depen-

dent DOFs for a given component
h number of candidate vectors
N number of disassembled DOFs
n number of components
s number of sectors
T kinetic energy
Tm dependence threshold
V potential energy
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