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a b s t r a c t

Accurate modeling of damping in structures is of great importance for vibration

response analysis and control. This paper addresses the issue of identification of

damping matrix of a structure by posing it as a finite element damping matrix updating

problem. Many of the current updating approaches, dealing with updating of damping

matrix, perform simultaneous updating of mass, stiffness and damping matrices.

However, such a strategy is faced with numerical problems in practical implementation,

since the magnitude of stiffness and mass matrix elements is generally much more than

that of the damping matrix elements causing difficulties in accurate identification of the

damping matrix. Some other approaches divide the process of updating of the mass and

stiffness matrix and the damping matrix into two stages, but their application is

restricted to structures with low levels of damping. This paper addresses these issues by

developing an updating formulation that seeks to separate updating of the damping

matrix from that of updating of the stiffness and the mass matrix. The proposed

damping matrix updating method utilizes the concept of normal frequency response

functions (FRFs) available in the literature. The method is formulated so as to reduce the

difference between the complex FRFs, which can be measured in practice, and the

normal FRFs, whose estimates can be obtained from the measured complex FRFs. The

effectiveness of the proposed method is demonstrated through a numerical study on a

simple but representative beam structure. The issue of coordinate incompleteness and

robustness of the method under presence of noise is investigated. It is found that the

proposed method is effective in the accurate identification of the damping matrix in

cases of complete, incomplete and noisy data and is not limited by the level of damping

in the structure.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The identification of damping in structural systems and machines is important for predicting vibration levels, transient
responses, transmissibility, decay rate or other characteristics that are influenced by energy dissipation characteristics.
There are two distinct issues related with damping identification: identification/knowledge of the correct damping
mechanism/mechanisms and identification of the spatial distribution of the damping over the structure. Various damping
models such as viscous (Rayleigh [1]), hysteretic (Bert [2]), viscoelastic (Christensen [3], Lakes [4]), friction (Berger [5]),
micro-slip (Osinski [6]), air damping (Nashif et al. [7], Jones [8]) and non-viscous damping models based on fractional
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derivatives (Bagley and Torvik [9], Torvik and Bagley [10], Gaul et al. [11], Maia et al. [12]) have been proposed. Models
that are based on the past history of motion via convolution integrals over some kernel functions offer a most general way
to model damping for a linear analysis (Woodhouse [13]). Viscous and hysteretic damping models are often used in
vibration and modal analysis due to the relative simplicity they offer in mathematical analysis. Once damping mechanism
is chosen, the next step is to identify spatial distribution of damping over the structure.

Many of the approaches, that have been proposed, attempt to identify the damping matrix directly from either the
measured FRFs or from the modal data extracted from them. If all the eignevalues and the eigenvetors of a structure are
known then the damping matrix, as well as the mass and stiffness matrix can be computed using the explicit formulas
given by Lancaster [14]. Fritzen [15] extended the instrument variable method for identification of mass, stiffness and
damping matrices using vibration test data. This method is considered superior to least square method as it has been
shown that it gives unbiased estimates in the presence of noise when equation error is used to formulate the error
between the analytical and the experimental data. Mottershead and Foster [16] developed the formulation of instrument
variable filter in the continuous frequency domain. Lee and Dobson [17] presented a method for estimating spatial
matrices from the FRF data. The matrices obtained are of reduced size as compared to the FE model. A concept of so-called
normal FRFs is presented by Chen et al. [18], in which they derive a relationship between the complex FRFs and the normal
FRFs, which represent the FRFs in the absence of damping. Chen et al. [19] use these relationships to identify mass,
stiffness and damping matrices directly from the complex FRF data. The main idea proposed is to separate the estimation
of the damping matrix from that of estimation of mass and stiffness matrix. The effectiveness of this direct identification
method is demonstrated on two lumped parameter examples. Adhikari and Woodhouse [20] presented a method to obtain
a viscous damping matrix from complex mode shapes and complex natural frequencies. The method is based on a first
order perturbation approach assuming that the damping is small. Barbieri et al. [21] proposed a method for identification
of damping matrix directly from the experimental estimate of natural frequencies and the damping ratios. The size of the
damping matrix obtained is related to the number of measured modes. A review of damping matrix identification from
experimental data is presented by Pilkey and Inman [22] and Phani and Woodhouse [23]. Prandina et al. [24] present a
study of comparison of three of the approaches to damping matrix identification and the method based on inversion of the
measured matrix of receptances is found to be superior.

It is seen that the methods of identification of damping matrix, and mass and stiffness matrices, directly from the
experimental data have been demonstrated on discrete and lumped parameter models and simple structures. The
application of these methods to damping matrix identification of complex structures places a stringent requirement that
experimental measurements should be available at all the degrees of freedom of the structure or the damping matrix.
Quite often, in practice, the damping matrix needs to be used along with FE mass and stiffness matrices that typically have
much higher order than the number of measurements. Since, it is not practically possible to perform measurements at all
the degree of freedoms used in the FE model, the application of direct identification methods to practical problems is not
straightforward if the identified damping matrix is intended to be used with FE mass and stiffness matrices.

In view of above, this paper addresses the issue of identification of damping matrix indirectly through FE model
updating. Updating of structural dynamic finite element models has been an active area of research for the last three
decades and several approaches have been proposed as shown in the surveys by Imregun and Visser [25], Mottershead and
Friswell [26] and in the text by Friswell and Mottershead [27]. A large number of methods, a majority of which focus on
updating of mass and stiffness matrix, have been proposed and the details of these can be seen from these references. The
review of updating methods here would be restricted to only those methods that consider updating of the damping matrix.

Lin and Ewins [28] presented an iterative FRF based method to update mass, stiffness and damping matrices, in which
the difference between the measured and analytical FRFs is linearized with respect to the parameters to be updated. Lin
et al. [29] presented a mass, stiffness and damping matrix updating method based on sensitivity of eigendata. For lightly
damped structures, Brown et al. [30] developed a two stage approach based on complex eigendata sensitivity in which the

Nomenclature

MA analytical mass matrix
MX simulated experimental mass matrix
KA analytical stiffness matrix
KX simulated experimental stiffness matrix
C viscous damping matrix
D structural damping matrix
DSM dynamic stiffness matrix
ZA analytical DSM
ZX simulated experimental DSM
DOFs degrees of freedom
TDOF translational degree of freedom
RDOF rotational degree of freedom

FRFs frequency response functions
x(o) displacement vector
f(o) force vector
aN normal FRF matrix
aC complex FRF matrix
aC

R real part of complex FRF matrix
aC

I imaginary part of complex FRF matrix
ZC complex DSM
ZN normal DSM
DZC change in complex DSM
DZN change in normal DSM
Z part of DSM due to damping
DZ change in Z

b vector of physical parameters to be updated
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