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a b s t r a c t

This note addresses a controlled synchronization problem for chaotic systems involving a communication
network with data packet dropout. A chaotic master system and its slave system are connected with
a controller via a limited channel and data packet dropout is modeled as Bernoulli process. Then, a
coder–decoder pair is designed with the controller such that the master system and the slave system
are completely synchronized, not necessarily bounded for synchronization. Necessary data capacity of a
channel is explicitly stated. Finally, a numerical example for the 3-double-scroll chaotic system is applied
to illustrate the effectiveness of the obtained result.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the past two decades, the synchronization of chaotic systems
has always been a common research topic in non-linear sciences,
which has been extensively investigated due to its great poten-
tial applications in real world problems, for example, Boccaletti,
Kurths, Osipov, Valladares, and Zhou (2002), and the references
therein. Many remarkable methods have been proposed on how
synchronization can be reached, for instance, Carroll and Pecora
(1991), Yassen (2007). Among them, the controlled synchroniza-
tion is one of the effective methods. This is from a growing interest
in applications of control methods in synchronization (Fradkov &
Pogromsky, 1998).

Today, control systems involving a communication network
have attracted many researchers, and a quantized control is the
main concern. There have been many important results reported
on this topic. Meanwhile, due to the limited bandwidth and the
reliability of a communication network, data packet dropout is
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inevitable in transmission, and it has been considered recently
by Xiong and Lam (2007), Zhang and Yu (2007). It appears
that there is less attention paid on quantized synchronization
with limited information except for the past few years (Fradkov,
Andrievsky, & Evans, 2006, 2008; Fradkov and Andrievsky, 2009
and 2011). However, the quantized synchronization with data
packet dropout has seldom been investigated. Since chaos is
sensitive on disturbances, chaotic quantized synchronization with
data packet dropout is more significant.

Observer-based synchronization with limited information is
addressed for continuous-time chaotic systems in Fradkov et al.
(2006). In Fradkov et al. (2008), the controlled synchronization of
nonlinear Lurie systems with limited information is studied and
the results show that the quantized synchronization is bounded
and does not tend to zero if the channel required is limited. The
complete chaotic quantized synchronization could be reached in
case the channel capacity is unlimited. This result is not so satisfac-
tory because a channel capacity is limited in practice. Recently, the
passification method is introduced to overcome such a limitation
(Fradkov and Andrievsky, 2008, 2009 and 2011). However, no data
packet dropout has been considered in these results. To simplify
our study, we only consider the state case of quantized synchro-
nization.Wewill show that the limitation of bounded synchroniza-
tion could be removed under certain conditions, even it has data
packet dropout. This is a main objective of this note. We show that
the master system is detectable under a designed coder–decoder
pair. Moreover, the channel capacity can be explicitly computed
for such synchronization.
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2. Problem formulation

Consider the following general form of chaotic systems:

ẋ(t) = f (x(t)), x(0) = x0, (1)

where x ∈ Rn is the state of the master system. The controlled
chaotic system is given by

ẏ(t) = f (y(t)) + Bu, y(0) = y0, (2)

where y ∈ Rn is the state of the slave system, B is a known constant
matrix with an appropriate dimension, u is an input. Suppose that
the initial state x0 ∈ Ω , where Ω is a given bounded set (e.g. the
attractor of a chaotic system) and f (x) ∈ Rn is continuous. The con-
dition on the set Ω is assumed as follows:

∥f (x) − f (y)∥∞ ≤ L∥x − y∥∞.

Remark 1. SinceΩ is bounded, we assume the Lipschitz condition
onΩ , not local as usual, without loss of generality, by following the
Lipschitz global optimization method provided by Sergeyev and
Kvasov (2010).

In this note, themaster and the slave systems are connected via
a limited channel. Only a limited number of bits are then trans-
mitted. To design a suitable coder–decoder is the first step. The
rectangular coding partition is basicallymotivated fromSavkin and
Cheng (2007). Specially, for a given sampling period T > 0, the
coder signal h(kT ) (k = 1, 2, . . .) is transmitted through a lim-
ited channel at discrete time kT . Then, at the remote receiver, a de-
coder decodes the received code-words and constructs an estimate
x̂ of the master system’s state. If the codeword h(kT ) is transmit-
ted successfully, the decoder decodes the received code-words and
resets the initial state. On the other hand, if the code-word h(kT )
is dropped out, the previous state will be used instead. This gener-
ates a discrete variable θkT = 0 if a measurement is dropped, and
θkT = 1 if a measurement is received. θkT is an independent and
identically distributed Bernoulli process

Pr ob{θkT = 0} = δ, Pr ob{θkT = 1} = 1 − δ, (3)

where 0 ≤ δ < 1. We use the following coder–decoder form.
Coder:

h(kT ) = Jk

x(·)|kT0


; (4)

Decoder:

x̂(t)
(k+1)T
kT = Lk(θTh(T ), θ2Th(2T ), . . . , θkTh(kT )), (5)

where Jk and Lk (k = 1, 2, . . .) are the undetermined coder and
decoder functions. Meanwhile, it is assumed that the information
on data is lost or not is known to the decoder.

3. Main results

Definition 1. The master system (1) is said to be detectable via a
limited channel, if there exists a coder–decoder (4) and (5) such
that

lim
t→∞

E{∥x(t) − x̂(t)∥∞} = 0,

where E is a mathematical expectation.

Definition 2. The quantized synchronization between (1) and (2)
is reached via a limited channel if there exists a coder–decoder pair
(4) and (5) such that

lim
t→∞

E{∥x(t) − y(t)∥∞} = 0.

Suppose that the number N taken by the coder satisfies N = qn,
where q is a positive integer. For any given constant a > 0,

B(0, a) =

x ∈ Rn

 ||x||∞ ≤ a


is partitioned into qn equal super-cube boxes

I1i1(a) × I2i2(a) × · · · × Inin(a),

where ij ∈ {1, 2, . . . , q} (j = 1, 2, . . . , n). For each i ∈ {1, 2,
. . . , n}, the corresponding column state xi of x is located in one of
q intervals as follows:

I i1(a) :=


xi : −a ≤ xi < −a +

2a
q


,

I i2(a) :=


xi : −a +

2a
q

≤ xi < −a +
4a
q


, . . .

I iq(a) :=


xi : a −

2a
q

≤ xi ≤ a


.

Then, for any given x ∈ B(0, a), there exists a group of integers
i1, i2, . . . , in ∈ {1, 2, . . . , q} such that

x ∈ I1i1(a) × I2i2(a) × · · · × Inin(a) ⊂ B(0, a). (6)

Define the center of I1i1(a) × I2i2(a) × · · · × Inin(a), containing the
state x as follows.

Ca(i1, i2, . . . , in) =


−a +

2i1 − 1
q

a, −a

+
2i2 − 1

q
a, . . . ,−a +

2in − 1
q

a
T

.

Denote

M0 = sup
x0∈Ω

∥x0∥∞, a(0) = M0, a(1) =
eLT

q
M0

and

a(k + 1) =


1 −


1 −

1
q


θkT


eLTa(k), k = 1, 2, . . . . (7)

Remark 2. Assume that the first coder signal is transmitted suc-
cessfully.

Now we are in a position to design the coder–decoder pair,
which is given by

Coder: h(kT ) = {i1, i2, . . . , in} for

x(kT ) − x̂−(kT ) ∈ I1i1(a(k)) × I2i2(a(k)) × · · · × Inin(a(k)), (8)

where ‘‘−’’ refers to the limit from below.
Decoder:

˙̂x(t) = f (x̂(t)), t ∈ [kT , (k + 1)T ), x̂−(0) = 0,
x̂(kT ) = x̂−(kT ) + θkTCa(k)(i1, i2, . . . , in).

(9)

Theorem 1. For the given data packet dropout rate δ, if δeLT < 1,
then themaster system (1) is detectable under the given coder–decoder
pair.

Proof. Since δeLT < 1, then, there exists an integer q > 0 such that

r =


δ +

1 − δ

q


eLT < 1. (10)

We first show that the decoding condition satisfies

x(kT ) − x̂−(kT ) ∈ B(0, a(k)) (11)
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