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a b s t r a c t

In this paper, we study a multi-vehicle coverage control problem in constant flow environments while
taking into account both energy consumption and traveling time. More specifically, the metric (called the
mixed energy–time metric) is a weighted sum of the energy consumption and the traveling time for a
vehicle to travel from one point to another in constant flows when using the minimum energy control,
and the objective is to find vehicle locations that canminimize the expectedmixed energy–time required
for the set of vehicles to cover a region. We propose a gradient based control law which is calculated
based on refined approximated Voronoi cells (induced by the mixed energy–time metric) and of which
the convergence is proved via Hybrid Systems Theory. Simulations show that the refined gradient based
control can achieve similar performance as the exact gradient based control.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Large groups of mobile vehicles equipped with sensors (such
as the ones reported in D’Este, Barnes, Sharman, & McCulloch,
2012; Floating sensor network project, 0000) are currently being
developed to facilitate surveillance and actuation in remote en-
vironments. In flow environments, monitoring tasks include the
evaluation of algae blooms (Bertozzi, Kemp, & Marthaler, 2005),
debris (Lee, Cho, King, Fang, & Lee, 2009), and water levels at flood
season (Zhang, Tao, & Cao, 2010). These monitoring tasks require
mobile vehicles to move to a certain point of interest and take ac-
tions. For nonurgent tasks like the monitoring of algae blooms in
rivers, the top priority is to preserve energy consumptionwhile ve-
hicles reach the point of interest to take measurements of certain
chemicals. However, in search and rescue missions, or in rapidly
changing environments, vehicles need to reach the point of interest
within the shortest time period. For other tasks in between, there
should be a compromise between minimizing traveling time and
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minimizing energy consumption. Motivated by this, here we pro-
pose a mixed energy–timemetric to capture this compromise, and
investigate the optimal locations of mobile vehicles to cover a cer-
tain region.

Deployment of a group of mobile vehicles to collectively cover
a certain region has been studied extensively (Anderson, Bakolas,
Milutinović, & Tsiotras, 2012; Barrett, 2007; Baumgartner, Ferrari,
& Rao, 2009; Cortés, Martinez, Karatas, & Bullo, 2004; Enright,
Savla, & Frazzoli, 2008; Hokayem, Stipanović, & Spong, 2007; Kwok
&Martinez, 2010; Luna, Fierro, Abdallah, &Wood, 2010;Mahboubi,
Sharifi, Aghdam, & Zhang, 2012; Stanković, Dürr, & Johansson,
2011) (for a more comprehensive treatment, refer to Chapter 5
in Bullo, Cortes, & Martinez, 2009). The objective is usually to
maximize/minimize a function related to the sensing performance
(e.g., the work in Cortés et al., 2004; Hokayem et al., 2007; Luna
et al., 2010; Mahboubi et al., 2012; Stanković et al., 2011) or the
traveling time (e.g., the work in Anderson et al., 2012; Enright
et al., 2008; Kwok & Martinez, 2010). The underlying vehicle
models can be either holonomic (e.g., Cortés et al., 2004; Kwok &
Martinez, 2010; Luna et al., 2010) or nonholonomic (e.g., Enright
et al., 2008). There is limited work on coverage control in river
environments (one example is the work in Kwok & Martinez,
2010). In Kwok and Martinez (2010), mobile vehicles cannot run
against flow and the objective is to deploy them to maximize the
total area reachable in a fixed amount of time. For nonurgent tasks,
the energy consumption of mobile vehicles powered by batteries
can be more critical compared with the traveling time due to
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limited battery capacity. In Ru and Martinez (2011), we study
the minimum energy control for holonomic vehicles in constant
flow environments and propose a minimum energy metric to
assign regions of the environment to them (for details, refer to
Proposition 2).

In this paper, we study a coverage control problem in river envi-
ronmentswhile taking into account both traveling time and energy
consumption. This is motivated by the facts that mobile vehicles
are usually powered by batteries of limited capacity and for cer-
tain relatively urgent tasks the traveling time also needs to be taken
into account. Therefore, we introduce a mixed energy–timemetric
based on the minimum energy control for mobile vehicles in con-
stant flows, to capture a compromise between traveling time and
energy consumption. Our objective is to drive a group of vehicles
to a vehicle location configuration that locally minimizes this met-
ric. Since the mixed metric induces Voronoi partitions that might
not be convex and are difficult to compute exactly, we introduce
lower and upper approximations that can be refined to be arbitrar-
ily close to the exact partition.We propose a refined gradient based
control law and prove its convergence by formulating vehicle evo-
lutions as a hybrid system and utilizing the Hybrid Invariance Prin-
ciple (Sanfelice, Goebel, & Teel, 2005). In our algorithm, region
refinement is produced when a condition that guarantees objec-
tiveminimization is violated, similarly in spirit to the self-triggered
strategy of Nowzari and Cortés (2011) for the sporadic update of
vehicles’ locations. Thus, our approach could be combined with
Nowzari and Cortés (2011) and provides a general methodology
to deal with general metrics for which Voronoi regions are hard
to compute but which can be approximated with an arbitrary pre-
cision at the expense of higher computational costs. Simulations
show that the refined gradient based control can achieve similar
performance as the exact gradient based control. The contributions
of this work include (i) the introduction of a mixed energy–time
metric for vehicles in constant flow environments, (ii) the pro-
posed (refined) lower and upper approximations of mixed Voronoi
cells, (iii) the introduction of a general methodology (i.e., the re-
sult in Theorem 5) to deal with hard-to-compute Voronoi regions
in coverage problems, and (iv) the proof of the convergence for re-
fined gradient-based control.

2. Problem formulation

The studied flow environment is described by a bounded two-
dimensional region D =


(x y)T ∈ R2

| 0 ≤ x ≤ L, |y| ≤
W
2


,

where L > 0 (orW > 0) is the length (or width) of the region. The
velocity field is a mapping v : D → R2 which maps (x y)T to (B 0)T
with B > 0, i.e., the flow is only in the x direction.

A vehicle runs at speed u = (ux uy)
T , and then its dynamics can

be described by

dx
dt

= ux + B,
dy
dt

= uy. (1)

We assume that vehicles can run against the flow. To quantify the
minimum energy required for a vehicle to move from one point
to another in the region D among all possible controls, we recall a
(pseudo)-metric as introduced in Ru and Martinez (2011).

Definition 1. Given two points p1 and p2 in the flow environment
D, the energy metric J(p1, p2) is defined as J(p1, p2) = min

 tf
0 uT

udt , where tf is free, u satisfies Eq. (1), and x(0) = xp1 (i.e., the x
coordinate of p1), y(0) = yp1 (i.e., the y coordinate of p1), x(tf ) =

xp2 , y(tf ) = yp2 .

The explicit expression for the energy metric is given below, and
the minimum energy control results in a straight line trajectory

from p1 to p2 with the traveling time tf =
dp1p2

B .

Proposition 2 (Ru & Martinez, 2011). Given p1 and p2 in D with the
velocity field v = (B 0)T , the minimum energy is

J(p1, p2) = 2B(dp1p2 + xp1 − xp2),

and the optimal control is u(t) = −
1
2 (C1 C2)

T for t ∈ [0, tf ], where

C1 = 2B

1 +

xp1−xp2
dp1p2


, C2 =

2B(yp1−yp2 )

dp1p2
, and tf =

dp1p2
B . �

Given a set of n vehicles {1, 2, . . . , n} with locations P = {p1, p2,
. . . , pn} and a task at q ∈ D, we are interested in assigning a vehi-
cle from P to serve the task using the minimum energy control. We
do so using a multi-center function (Bullo et al., 2009). To capture
the importance of the location q, we consider a continuous density
function φ : D → R≥0. The larger the value φ(q), the more impor-
tant the location q is. Analogously to Bullo et al. (2009), one can use

H1(P) =


D
min
pi∈P

J(pi, q)φ(q)dq

to determine a locally optimal sensor configuration and region par-
tition. At a local minimum, a task at q is assigned to pi if and only
if it can be reached with smaller energy from pi than from any
other pj using the minimum-energy control of Proposition 2. Al-
ternatively, let t(pi, q) be the traveling time from pi to q along a
straight line with given velocity upper limit w (i.e., the minimum-
time control with velocity w). Similarly to what has been done in
multi-objective optimization, one could consider the mixed objec-
tive


D minpi∈P(βJ(pi, q) + (1 − β)t(pi, q))φ(q)dq to balance be-

tween energy consumption and traveling time to serve q, where
β ∈ [0, 1]. However, it is not clear how pi should be controlled to
reach an assigned qunder this cost as the underlying control strate-
gies (minimum energy/minimum time) are different — or how to
find uwith the mixed cost

βJ(pi, q) + (1 − β)t(pi, q). (2)

Using exclusively the minimum-energy control, we can factor in a
time consideration in H1 as follows. For β ∈ [0, 1], define:

Jmix(p1, p2) = βJ(p1, p2) + (1 − β)tf . (3)

Then minpi∈P Jmix(pi, q) is the minimum mixed energy–time re-
quired for the set of vehicles to serve the task at q using the
minimum-energy control. The expected minimum mixed en-
ergy–time for P to cover D is then given as:

H(P) =


D


min
pi∈P

Jmix(pi, q)


φ(q)dq. (4)

Observe that, when β = 0, a locally optimal solution to H as-
signs q to pi if and only if it can be reached with less time from
pi than from any other pj but using the minimum-energy control.
Othermixedmetrics can bedefined by choosing alternativemotion
control strategies. For example, using the minimum-time control
with velocity w to go from pi to q induces an energy expenditure
of J̃(pi, q). Then J̃mix(pi, q) = β J̃(pi, q)+(1−β)t(pi, q)would be the
corresponding mixed pseudo-distance factoring in an energy con-
sideration in the assignment. The difference between Jmix and J̃mix
lies in the ‘‘priority’’ which is given to energy consumption versus
time expenditure.

Remark 3. A similar cost function is considered in Baumgartner
et al. (2009), where a linear combination of track coverage and en-
ergy consumption is used as an objective to simultaneously maxi-
mize the quality of service and minimize the power consumption.
In general, since the traveling time and the energy consumption
are correlated, multi-objective optimization is necessary to cap-
ture the Pareto frontier; one approach is to use genetic algorithms
as in Barrett (2007).
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