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a b s t r a c t 

This paper considers the problem of tracking a network-wide solution that dynamically minimizes the 

summation of time-varying local cost functions of network agents, when some of the agents are malfunc- 

tioning. The malfunctioning agents broadcast faulty values to their neighbors, and lead the optimization 

process to a wrong direction. To mitigate the influence of the malfunctioning agents, we propose a total 

variation (TV) norm regularized formulation that drives the local variables of the regular agents to be 

close, while allows them to be different with the faulty values broadcast by the malfunctioning agents. 

We give a sufficient condition under which consensus of the regular agents is guaranteed, and bound the 

gap between the consensual solution and the optimal solution we pursue as if the malfunctioning agents 

do not exist. A fully decentralized subgradient algorithm is proposed to solve the TV norm regularized 

problem in a dynamic manner. At every time, every regular agent only needs one subgradient evaluation 

of its current local cost function, in addition to combining messages received from neighboring regular 

and malfunctioning agents. The tracking error is proved to be bounded, given that variation of the op- 

timal solution is bounded. Numerical experiments demonstrate the robust tracking performance of the 

proposed algorithm at presence of the malfunctioning agents. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Consider an undirected network consisting of n agents, which 

at time k try to cooperatively solve a decentralized dynamic opti- 

mization problem 

min 

˜ x k 

n ∑ 

i =1 

f k i ( ̃  x k ) . (1) 

Here f k 
i 

: R 

p → R is a convex and differentiable local cost function 

only available to agent i at time k and ˜ x k ∈ R 

p is the common opti- 

mization variable to all agents. At time k , every agent is allowed to 

exchange its current local iterate with network neighbors, followed 

by local computation so as to track the dynamic optimal solution. 

The purpose of this paper is to develop a robust decentralized dy- 

namic optimization algorithm that solves (1) at presence of mal- 
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functioning agents. By malfunctioning agents, we mean those who, 

instead of transmitting local iterates to neighbors, send wrong val- 

ues (for example, faulty constants or random variables) due to fail- 

ures of communication or computation units. 

Decentralized dynamic optimization problems in the form of 

(1) are popular in multi-agent networks with time-varying tasks 

[2–5] . Examples include adaptive filtering and estimation in a 

wireless sensor network [6–8] , target tracking using a group of 

robots [9–11] , dynamic resource allocation over a communication 

network [12–14] , voltage control of a power network [15,16] , to 

name a few. Existing algorithms to solve (1) are (sub)gradient 

methods [8,15] , mirror descent method [5] , alternating direction 

method of multipliers [2,14] , as well as gradient, Newton, and in- 

terior point methods based on the prediction-correction scheme 

[3,4] . 

Nevertheless, most of the existing works assume that the agents 

faithfully follow prescribed optimization protocols: accessing dy- 

namic local cost functions, exchanging local iterates, and perform- 

ing local computations. This assumption does not always hold true 

since some of the agents might be malfunctioning in practice –

some may send malicious information to their neighbors so as to 

deliberately guide the optimization process to a wrong direction 

that they expect to reach, whilst some may send faulty values to 
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their neighbors, not deliberately but due to failures of communica- 

tion or computation units. This paper focuses on mitigating the im- 

pact of malfunctioning agents in decentralized dynamic optimiza- 

tion. 

The impact of malfunctioning agents has been analyzed in the 

context of average consensus over a social network [17–19] . It is 

shown that the malfunctioning agents shall bias the network opin- 

ions from the consensual state of the regular agents [17] , and the 

locations of the malfunctioning agents are critical to evolution of 

the network opinions [18] . Decentralized detection and localiza- 

tion methods are proposed in [19] to identify the malfunctioning 

agents. To the best of our knowledge, there is no existing work 

that considers the influence of the malfunctioning agents on the 

tracking performance of decentralized dynamic optimization. 

Our work is tightly related to [20] , whose goal is decentral- 

ized static optimization at presence of the malfunctioning agents. 

Different from the dynamic case studied in this paper, Ben-Ameur 

et al. [20] assumes that the local cost functions f k 
i 

are invariant 

across time k . To handle the faulty values broadcast by the mal- 

functioning agents, the total variation (TV) norm of the vector that 

stacks all the local variables is penalized. Through minimizing the 

summation of the local cost functions and the TV norm, most lo- 

cal variables (from the regular agents) are able to reach consen- 

sus and those outliers (from the malfunctioning agents) are toler- 

ated. A subgradient method is proposed to solve this robust decen- 

tralized static optimization problem. Our work also adopts the TV 

norm penalty to handle the malfunctioning agents and a subgra- 

dient algorithm as the optimization tool, but extends their appli- 

cations to the dynamic regime. We give a sufficient condition un- 

der which consensus of the regular agents is guaranteed, and also 

give an upper bound on the tracking error of the regular agents. 

These results are different to those developed for the static case 

in [20] due to the dynamic environment, and provide theoretical 

guarantees to the tracking performance of the subgradient method 

at presence of the malfunctioning agents. 

Another related work is [21] , which considers decentralized 

stochastic optimization. Instead of tracking a dynamic optimal solu- 

tion, Koppel et al. [21] minimizes the summation of the local cost 

functions f k 
i 

across all nodes i and all times k . Therefore, the lo- 

cal iterates are expected to reach a steady-state consensual solu- 

tion, given that the stochastic noise of the local cost functions is 

bounded. To allow for data heterogeneity across the network, Kop- 

pel et al. [21] introduces proximity constraints such that neighbor- 

ing local variables are close enough, but not necessarily consen- 

sual. Though not explicitly claimed in [21] , this approach is also 

able to alleviate the influence of the malfunctioning agents. A sad- 

dle point method is proposed to solve this constrained stochastic 

optimization problem. Our work is different from [21] in terms of 

problem setting (dynamic versus stochastic), mathematical formu- 

lation (TV norm penalty versus proximity constraints), and algo- 

rithm design (subgradient versus saddle point). 

The main contributions of this paper are as follows. 

1. We formulate a TV norm regularized problem, which is ro- 

bust to presence of the malfunctioning agents ( Section 2 ). We 

give a sufficient condition under which consensus of the regu- 

lar agents is guaranteed, and bound the gap between the con- 

sensual solution and the optimal solution we pursue as if the 

malfunctioning agents do not exist ( Section 3.2 ). 

2. We propose a fully decentralized subgradient algorithm to solve 

the TV norm regularized problem in a dynamic manner. At ev- 

ery time, every regular agent only needs one subgradient evalu- 

ation, in addition to combining messages from neighboring reg- 

ular and malfunctioning agents ( Section 2 ). We prove that the 

tracking error is bounded, given that the variation of the opti- 

mal solution is bounded ( Section 3.3 ). 

3. We provide extensive numerical experiments, demonstrating 

the robust tracking performance of the proposed algorithm at 

presence of the malfunctioning agents ( Section 4 ). 

2. Problem formulation and algorithm design 

Let us consider a connected undirected network of n agents V = 

{ 1 , · · · , n } with n = |V| , and a set of edges A . If an edge (i, j) ∈ A , 

then agents i and j are neighbors, and can communicate with each 

other. We denote the set of agent i ’s neighbors as N i . The agents 

aim at solving the decentralized dynamic optimization problem in 

the form of (1) . We assume that the network is synchronized, and 

at time k every agent i strictly conforms to the following protocol: 

Step 1. Accessing local cost function f k 
i 

. 

Step 2. Computing local iterate x k 
i 

∈ R 

p . 

Step 3. Broadcasting local iterate x k 
i 

to neighbors j ∈ N i . 

However, some of the agents in the network are malfunction- 

ing, meaning that they broadcast faulty values other than local it- 

erates. To be specific, denote M as the set of malfunctioning agents 

and R := V\M as the set of regular agents. Define r := |R| and 

m := |M| . The subset of edges connecting the regular agents in V
is denoted by E ⊆ A . At time k , malfunctioning agent i ∈ M broad- 

casts a variable z k 
i 

∈ R 

p , instead of x k 
i 
, to its neighbors j ∈ N i . The 

faulty value may come from deliberate malicious attack, failure of 

the computation unit, or breakdown of the communication unit. 

Different from [17–20] that assume the faulty values are constant 

across time k , we also allow that they are time-varying (for exam- 

ple, random variables or values generated from certain functions of 

time). Although identifying the malfunctioning agents is possible 

in decentralized static optimization [19] , their detection and local- 

ization are much more challenging for the dynamic task, especially 

when the faulty values are time-varying. 

Observe that at presence of the malfunctioning agents, it is 

meaningless to solve (1) , which minimizes the summation of all 

agents’ local cost functions. For example, in multi-robot tracking, 

when several robots are malfunctioning, taking their information 

into consideration shall bias the tracking result. Therefore, at time 

k , our goal is no longer solving (1) but finding the dynamic opti- 

mal solution that minimizes the summation of the regular agents’ 

local cost functions 

˜ x k ∗ := arg min 

˜ x k 

∑ 

i ∈R 

f k i ( ̃  x k ) . (2) 

Directly solving (2) is intractable because the identities of malfunc- 

tioning agents are not available in advance. To address this issue, 

we introduce a TV norm penalty on the transmitted values, which 

include the local iterates of the regular agents and the faulty values 

from the malfunctioning agents. For agent i , define R i as the set of 

its regular neighbors and M i := N i \R i as the set of its malfunc- 

tioning neighbors. At time k , we expect to approximately solve 

x k ∗ := [ x k ∗i ] = arg min 

x k :=[ x k 
i 
] 

∑ 

i ∈R 

f k i (x k i ) 

+ λ
∑ 

i ∈R 

( 

1 

2 

∑ 

j∈R i 

‖ x k i − x k j ‖ 1 + 

∑ 

j∈M i 

‖ x k i − z k j ‖ 1 

) 

, (3) 

where x k := [ x k 
i 
] ∈ R 

rp is a vector that stacks all the local variables 

x k 
i 

of regular agents, x k ∗ := [ x k ∗
i 

] ∈ R 

rp is the optimal solution of (3) , 

and λ is a positive constant penalty factor. The second term in the 

cost function of (3) is the TV norm penalty on the transmitted val- 

ues, whose minimization forces every x k 
i 

to be close to most of the 

received values on agent i , but allows it to be different to those 

received outliers [20] . Therefore, when the malfunctioning agents 

are sparse within the network, the TV norm penalty helps miti- 

gate their negative influence. For the applications of TV norm in 

identifying sparse outliers, readers are referred to [22,23] . 
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