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a b s t r a c t

The detection of changes in the eigenstructure of a linear time invariant system by means of a subspace-
based residual function has been proposed previously. While enjoying some success in its applicability in
particular in the context of vibrationmonitoring, the robustness of this framework against changes in the
noise properties has not been properly addressed yet. In this paper, a new robust residual is proposed and
the robustness of its statistics against changes in the noise covariances is shown. The complete theory for
hypothesis testing for fault detection is derived and a numerical illustration is provided.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The family of subspace identification algorithms has been in-
vestigated and has expanded rapidly since its foundations in the
1980’s (Benveniste & Fuchs, 1985; Larimore, 1983; van Over-
schee & De Moor, 1996; Verhaegen, 1993; Viberg, 1995; Viberg,
Wahlberg, & Ottersten, 1997). Fault detection and isolation (FDI)
is another topic closely related to system identification (Delyon &
Benveniste, 1997). In many applications, the FDI problem is a cru-
cial issue which has been theoretically and experimentally inves-
tigated with different types of approaches, as can be seen from the
survey papers (Basseville, 1998, 2009; Frank, 1990; Gertler, 1988;
Isermann, 1984; Willsky, 1976), the books (Basseville & Nikiforov,
1993; Patton, Frank, & Clarke, 1989), etc.
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In several fault detection problems, the detection of changes
in the eigenstructure of a linear time invariant system is the
main subject of interest, as for health monitoring of mechanical
systems and vibrating structures (Doebling, Farrar, & Prime, 1998;
Farrar, Doebling, & Nix, 2001), where subspace methods have
exhibited good capabilities in eigenstructure identification (Bas-
seville et al., 2001). Fault detection for vibrating structures has also
concurrently been investigated over the years using very different
methods (Isermann, 2006). A particular approach based on sub-
space identificationmethods has been developed in Basseville, Ab-
delghani, and Benveniste (2000), which belongs to the family of
model-based approaches that have been considered for a long time
(Isermann, 2005; Isermann & Balle, 1997). The approach consists
in the detection of small deviations from a reference system based
on the so-called local approach (Benveniste, Basseville, & Mous-
takides, 1987; Le Cam, 1986), where the fault detection problem
for a parameterized stochastic process is transformed into moni-
toring the mean of a Gaussian residual vector. The subspace-based
residual uses the left null space of a nominal observabilitymatrix of
the system in a reference state, which is the same as a correspond-
ing Hankel matrix built from the reference output data (Viberg,
1995). In a possibly faulty state the residual denotes whether the
new Hankel matrix is still well described by the null space of the
reference state. A comparison through aχ2 test is possible because
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the covariance of the residual is assumed to be the sameunder both
hypotheses in Basseville et al. (2000).

There are a number of convergence studies on subspace
identification methods in a stationary context in the literature,
for example in Bauer (2005), Bauer, Deistler, and Scherrer (1999),
Bauer and Jansson (2000), Chiuso and Picci (2004), Chiuso and
Picci (2005) and Deistler, Peternell, and Scherrer (1995). Therefore,
the behavior and robustness of subspace methods in the context
of identification is well understood. However, the problem of
changes in the noise statistics for the output-only fault detection
framework developed in Basseville et al. (2000) has not been
addressed, assuming that the non-stationary consistency property
of subspace methods (Benveniste & Fuchs, 1985) is inherited.
For a stationary system, the assumption about constant noise
covariance during several measurements cannot be sustained in
a real life context and is revisited in this paper. While changes in
the noise characteristics do not affect the system eigenstructure,
they affect the statistics of the considered residual function.
Unlike in Gustafsson (1996), where the problem of detecting
changes in the pole and the zero parts of a transfer function is
addressed, our concern is the output-only detection of changes
in the eigenstructure, while asking for robustness with respect to
changes in the zeros of the system. Note that the only attempt
to generalize the FDI approach of Basseville et al. (2000) to
input/output subspace methods is the recent work of Esna Ashari
and Mevel (2012).

The paper is organized as follows. In Section 2, the state of
art for subspace-based fault detection using the local approach is
recalled. The weakness of this approach in the context of changing
process noise covariance is analyzed in Section 3. In Section 4, a
new subspace residual based on the left factor of the singular value
decomposition of the Hankelmatrix is proposed and its robustness
to changes in the process noise covariance is proven. In Section 5,
the properties of the corresponding test are investigated, as well
as necessary rank properties. Finally, the efficiency of the new
residual with respect to previous approaches is illustrated on a
numerical example from vibration monitoring in Section 6.

2. Stochastic subspace-based fault detection

In this section, the residual function of Basseville et al. (2000)
is recalled that is based on well established subspace foundations
(Viberg et al., 1997).

2.1. Models and parameters

Consider the discrete time state–space model
xk+1 = Axk + vk
yk = Cxk + wk

(1)

with the states xk ∈ Rn, the outputs yk ∈ Rr , the state transition
matrix A ∈ Rn×n and the observation matrix C ∈ Rr×n, where r is
the number of outputs and n is the system order, which is assumed
to be known or estimated in the reference condition as in Bauer
(2001). The process noise vk is assumed to be stationary Gaussian
white noise with zero mean and covariance matrix Q : E(vkv

T
k′)

def
=

Q δ(k−k′), where E(·) denotes the expectation operator, andwk is
the output noise. While the algorithms in this paper can be easily
extended to a state–space model also containing input terms, we
use the output-onlymodel (1) for simplicity of notation anddiscuss
the extension in Section 5.3.

The eigenstructure of system (1) shall be monitored for a
change, which is the collection of eigenvalues and observed
eigenvectors (λ, ϕ) with Aφi = λiφi, ϕi = Cφi. The eigenstructure
(λ, ϕ) is a canonical parameterization of system (1) that is

invariant to the choice of its state–space basis and considered as
the system parameter vector θ with

θ
def
=


Λ

vec(Φ)


∈ C(r+1)n, (2)

where Λ = [λ1 · · · λn]
T , Φ = [ϕ1 · · · ϕn] and vec denotes the

vectorization operator.We assume that the systemhas nomultiple
eigenvalues.

2.2. Subspace-based residual function

For the detection of changes in the eigenstructure θ from
a deterministic reference parameter θ0 a residual function was
proposed in Basseville et al. (2000) that is associated with a
covariance-driven output-only subspace identification algorithm.
Let G = E(xk+1yTk ) be the cross-covariance between the states and
the outputs, let Ri = E(ykyTk−i) = CAi−1G (i ≥ 1) be the theoretic
output covariances and Hp+1,q be the theoretic block Hankel ma-
trix containing the Ri with the well-known factorization property

Hp+1,q = Op+1Cq (3)

into observability Op+1 = [CT (CA)T · · · (CAp)T ]T and controlla-
bility matrix Cq = [G AG · · · Aq−1G]. Parameters p and q are cho-
sen such that rank(Op) = rank(Cq) = n. For the construction of
a residual function, the observability matrix Op+1(θ0) is obtained
from the referencemodel parameter θ0 in themodal basis (C = Φ ,
A = diag(Λ)). A matrix S(θ0) is computed, whose columns are
an orthonormal basis of the left null space of Op+1(θ0), such that
S(θ0)TOp+1(θ0) = 0. Then, S(θ0) also defines a basis of the left null
space ofHp+1,q in the reference state because of factorization prop-
erty (3), and the characteristic property of a system in the reference
state corresponding to θ = θ0 writes (Basseville et al., 2000)

S(θ0)THp+1,q = 0. (4)

From the outputs YN
def
= {yk : k = 1, . . . ,N}, a consistent es-

timate Hp+1,q is obtained from the estimated output covariancesRi = 1/N
N

k=1 yky
T
k−i.

To decide whether the measured data correspond to θ0 or not,
the residual vector

ζ (θ0, YN) =
√
N vec


S(θ0)T Hp+1,q


(5)

is defined, which has the property

Eθ (ζ (θ0, YN)) = 0 iff θ = θ0, (6)

where Eθ denotes the expectation operator when θ is the system
parameter. This property can be tested with a hypothesis test
derived in Basseville et al. (2000).

2.3. Residual properties and hypothesis test

In general, the distribution of ζ (θ0, YN) is unknown when data
is collected under parameter θ . However, an evaluation of the
residual is possible based on the asymptotic local approach for
change detection (Benveniste et al., 1987), assuming the close
hypotheses

H0 : θ = θ0 (reference system),

H1 : θ = θ0 + δθ/
√
N (faulty system),

(7)

where vector δθ is unknown but fixed. With this statistical frame-
work, very small changes in the system parameter θ can be de-
tected ifN is large enough. The statistical properties of the residual
are analyzed for N → ∞, and based on the asymptotic results
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