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A novel methodology for designing multivariable High-Order Sliding-Mode (HOSM) controllers for
disturbed feedback linearizable nonlinear systems is introduced. It provides for the finite-time
stabilization of the origin of the state-space by using output feedback. Only the additional assumptions
of algebraic strong observability and smooth enough matched disturbances are required. The control
problem is solved in two consecutive steps: firstly, designing an observer based on the measured output

and, secondly, designing of a full-state controller computed from a new virtual output with vector relative
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degree. The introduced notion of algebraic strong observability allows recovering the state of the system
using the measured output and its derivatives. By estimating the required derivatives through the HOSM

differentiator, a finite-time convergent observer is constructed.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The design of robust controllers is an important topic in
automatic control theory. Uncertainty is also manifested by only
measuring a subset of the state variables of the system, namely, its
“measured output”. In such scenario, Sliding-Mode (SM) output-
feedback based controllers have shown to be very successful
(Oliveira, Peixoto, Costa, & Hsu, 2010; Oliveira, Peixoto, & Hsu,
2010, 2013; Peixoto, Oliveira, Hsu, Lizarralde, & Costa, 2011).

Moreover, modern systems frequently mix continuous and
discrete event dynamics for which the stabilization problems
are much more intricate. However, hybrid systems with strictly
positive dwell-time can be effectively controlled if the controller
accomplishes the control objective before the next switching
or impulse time. Therefore, robust output-feedback controllers
providing finite-time state stabilization become relevant.
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High Order SMs (HOSMs) are useful in this context providing
for the finite-time exact? output stabilization using only output
feedback (Levant, 2003). In addition, in the presence of noise
and sampling, HOSMs offer better accuracy than first-order SM.
However, they were originally designed only for single-input
single-output systems, see, e.g., Dinuzzo and Ferrara (2009) and
Efimov, Zolghadri, and Raissi (2011).

In Defoort, Floquet, Kokosy, and Perruquetti (2009), HOSM con-
trollers are extended to Multi-Input Multi-Output (MIMO) non-
linear systems under the assumption of vector relative degree
with respect to the measured output. This last assumption also
requires that the system has the same number of inputs as out-
puts. Recently, in Angulo, Fridman, and Levant (2012), the au-
thors introduced a methodology for the design of HOSM controllers
for MIMO disturbed linear systems under necessary conditions:
a known (affine) bound on the disturbance, controllability and
strong observability (Hautus, 1983). The proposed methodology al-
lows constructing an output-based HOSM controller guaranteeing
the finite-time exact convergence of the whole state of the system.

This brief extends the methodology introduced in Angulo et al.
(2012)in the context of linear systems to a class of MIMO nonlinear
systems. As in the linear case, the measured output does not
necessarily has vector relative degree. In this form, HOSMs can

2 Exactness is more than robustness: the effect of (matched) disturbances is
completely eliminated after a finite-time transient.
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be applied to a larger class of systems when compared to the
strategy of Defoort et al. (2009). Our approach requires introducing
a suitable concept of observability despite disturbances. The notion
of “algebraic strong observability” corresponds to the possibility
of reconstructing the state as a function only of the measured
output and a finite number of its derivatives. By using the HOSM
differentiator (Levant, 2003) to estimate the required derivatives,
a finite-time convergent observer is obtained.

By combining the proposed observer with HOSMs controllers
and dynamic feedback linearization, the problem of exact finite-
time state stabilization of nonlinear systems is solved. The proofs
of all Theorems are collected in the Appendix.

Main contributions. (1) An algorithm to construct an unknown
input observer for nonlinear systems is presented based on the
notion of algebraic strong observability and the use of HOSM
differentiators; (2) by using the proposed observer, a novel HOSM-
based output feedback control strategy for the finite-time state
stabilization of (dynamic) feedback linearizable nonlinear systems
with bounded matched disturbances is presented.

2. Problem statement

Consider
x=f®)+g®u+wl, y=hx; x0)=nx, (1)
where x(t) € R", u(t) € R™, w(t) € R™ and y(t) € RP are the
state, control input, disturbance and measured output, respec-
tively. The vector fields f, g and the function h are assumed to be
smooth. The control objective is to design the control input u(t),
depending only on the output y(t), to provide finite-time state sta-
bility at zero despite the presence of the disturbance w(t).

In order to present the assumptions we have made to solve the
control problem, let us first introduce the following concept:

Definition 1. System (1) is said to be algebraically strongly
observable with respect to the output y(t) € RP, if there exists
a function F and integers k;, i = 1, ..., p, such that

k (kp)
x=F(y1,...,y(]l),...,yp,...,ypq’). (2)

Strong observability was introduced by Hautus (1983) for
linear systems to solve the Unknown Input Observer (UIO) design
problem. It allows recovering the state of the system through the
knowledge of the output and its derivatives only, irrespective of
the input. The notion of algebraic strong observability is a natural
extension to the case of nonlinear systems. In Section 3, this
property will be shown to be instrumental for the design of a UIO
for nonlinear systems.

The following assumptions about the system will be made
throughout this paper:

(A1) system (1) is algebraically strongly observable with respect
to the measured output y;

(A2) for a given degree of smoothness S € Z,, there exists a
constant W™ such that |w®(t)] < WT,vt > 0 and all
k=0,...,S;

(A3) for all initial conditions x € R" and disturbances w(-)
satisfying A2, the solution® to system (1) with u(:) = 0
exists for all t > 0 and remains upper-bounded by a possibly
unknown number;

(A4) there exists a function g : R" — R™ such thatz = q(x) is a
flat output for system (1).

A flat system is feedback linearizable and, moreover, its state
and input can be written as a function of the flat output and
its derivatives (Sira Ramirez & Agrawal, 2004). Without loss of

3 Solutions to differential equations (and their associated inclusions) are
understood in Filippov’s sense (Filippov, 1960).

generality, we assume that q(0) = 0. Note that, in general, the
flat output z(t) may not coincide with the measured output y(t).
The degree S of required smoothness for the disturbance depends
on the “order” of the dynamic compensator used to linearize the
system, as shown in Section 4. In the particular case when the
system can be linearized by a static compensator, the disturbance
needs to be only uniformly bounded.

The approach we follow to solve the problem involves two
steps. First, based on A1, we present an algorithm to compute
the function F appearing in Eq. (2). This allows constructing a
UIO for the system once the required derivatives are estimated.
With Assumptions A2 and A3, it becomes possible to estimate such
derivatives using the HOSM differentiator (Levant, 2003). In the
second step, by using A4, it is shown that the finite-time state
stabilization problem is equivalent to the finite-time stabilization
of the flat output. This way, by using the estimated state of the
previous step to evaluate the flat output, a multivariable HOSM
controller that semi-globally stabilizes the flat output to zero in
finite-time is presented.

3. Construction of the Unknown Input Observer

Once the function F in (2) is known, the state can be determined
when the derivatives of the output are estimated. By means of the
HOSM differentiator, these derivatives can be estimated exactly
and in finite time. In addition, the HOSM differentiator provides an
estimation that is robust to measurement noise and has the best
order of precision (Levant, 2003).

The following Subsection presents an algorithm to compute the
function F for a class of nonlinear systems. Section 3.2, analyzes the
use of the HOSM differentiator to estimate the required derivatives.

3.1. An algorithm to construct an Unknown Input Observer

Let us consider the following additional assumption:
(A5) The Lie derivatives LgL}‘h(x) areconstantfork=1,...,n—1.

This assumption means that in the time derivatives of the
measured output, the matrix multiplying the input is constant. This
allows writing a constant orthogonal to such matrix. Assumption
A5 is only introduced to simplify the presentation of the algorithm:
in the general case when A5 is not satisfied, the orthogonal can be
computed in the same way but now depending on the state.

Let b denote a left annihilator for matrix b (i.e. btb = 0). The
presented algorithm computes the function F introduced in Eq. (2),
enabling the construction of a UIO for system (1). Our algorithm is
the “dual” of the standard Structure Algorithm (see Conte, Moog, &
Perdon, 2007, p. 76), since it looks for directions orthogonal to the
input. Nevertheless, it is closely related to the algorithm presented
in Molinari (1976) for linear systems.

Step 0. Set Jo := y and M (x) = h(x).

Step 1. Compute My(x) = Jo = LiMo(x) + L;Mo()w =
a;(x) + by (u + w), introduce y, := bllMo(x) = d7(x) and set

_ [¥o] _ [ho
oo =[] =[a%)

Step k + 1. Compute

M) = [J, - y,(("“)]T = U1 (%) + b (U + w),
introduce j/,(cljj]]) = bﬁHMk(x) = G41(x), and set
Yo h(x)
My p1(x) == =
gen Ag1(x)

By applying the algorithm, one is able to compute a sequence

of equations of the form [yg, 1, . . . ,5/,(<k)]T = My (x) for k > 1. The
algorithm converges in the following sense.
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