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a b s t r a c t 

Algorithms for learning overcomplete dictionaries for sparse signal representation are mostly iterative 

minimization methods that alternate between a sparse coding stage and a dictionary update stage. For 

most however, the notion of consistency of the learned quantities has not been addressed. Based on the 

observation that the observed signals can be approximated as a sum of rank one matrices, a new adaptive 

dictionary learning algorithm is proposed in this paper. It is derived via sequential adaptive penalized 

rank one matrix approximation where the � 1 -norm is introduced as a penalty promoting sparsity. The 

proposed algorithm uses a block coordinate descent approach to consistently estimate the unknowns 

and has the advantage of having simple closed form solutions for both the sparse coding and dictionary 

update stages. The consistency properties of both the estimated sparse code and dictionary atom are 

provided. The performance of the proposed algorithm compared to some state of the art algorithms is 

illustrated on both simulated data and a real functional magnetic resonance imaging (fMRI) data set from 

a finger tapping experiment. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Whether it is for restoration, filtering, compression, or higher 

level tasks such as extracting meaningful features and uncovering 

structural relationships, transforming signals and images to other 

domains and the characterizations with some desirable properties 

constitutes one of the main approach or procedure in signal and 

image processing. The last few years have seen sparse signal rep- 

resentations with overcomplete dictionary learning methods take 

an important place in signal and image processing offering solu- 

tions that outperform classical approaches in most cases. These 

methods via sparsity constraints have emerged as fundamental al- 

ternatives to the traditional Tikhonov regularization scheme and 

have proven successful in solving a variety of signal and im- 

age processing problems such as image denoising [1] , impulse 

noise removal [2] , radar target high resolution range profile (HRRP) 

recognition [3] , acoustic source localization [4] , face recognition 

[5] , discrimination [6] , seismic data analysis [7] , hyperspectral im- 

age classification [8] , speech separation [9] , image super-resolution 

[10] , and functional magnetic resonance imaging (fMRI) data anal- 

ysis [11,12] . While the underlying key constraint of all dictionary 

learning methods or algorithms is that the observed signal is 
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sparse within an overcomplete basis, which explicitly means that 

the signal can be adequately represented using a small number of 

the available dictionary atoms; their particularity is that the dic- 

tionary is also learned or adapted to find the sparse approxima- 

tion that best describes the observed signals. Given a set of cen- 

tered signals Y = { y 1 , y 2 , . . . , y N } ∈ R 

n ×N dictionary learning meth- 

ods learn a dictionary D = { d 1 , d 2 , . . . , d K } ∈ R 

n ×K , N > K > n , from 

Y such that each signal y ∈ Y can be well approximated by a sparse 

linear combination of { d i } K i =1 
; i.e.; y = 

∑ K 
i =1 x i d i ; where most of the 

coefficients x i ’s are zero or close to zero. This problem is often for- 

mulated as follows 

min 

D , X 
‖ Y − D X ‖ 

2 
F s.t. ‖ x i ‖ 0 ≤ s, ∀ 1 ≤ i ≤ N, (1) 

where the x i ’s are the column vectors of X , ‖ . ‖ F is the Frobe- 

nius norm, ‖ . ‖ 0 is the l 0 quasi-norm, which counts the number of 

nonzero coefficients and s denotes the maximum sparsity level al- 

lowed for each signal from Y . In addition, the dictionary is usually 

constrained to belong to the set of feasible dictionaries defined by 

D = { D ∈ R 

n ×K : ‖ d k ‖ 2 = 1 ∀ k } , where ‖ . ‖ 2 is the l 2 norm and 

d k is the k th column of D to avoid scaling ambiguity. 

Dictionary learning algorithms approximately solve the non- 

convex and NP-hard problem (1) . For most, they consist of two 

stages: a sparse coding stage and a dictionary update stage. In 

the first stage the dictionary is kept constant and the spar- 

sity constraint is used to update the codes { x i } K i =1 
to produce a 

sparse linear approximation for the observed signals with the cur- 

rent dictionary. A number of sparse coding algorithms have been 
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proposed to perform this stage among them greedy and relaxation 

algorithms [13] . In the second stage, based on the current sparse 

codes, the dictionary is updated to minimize a residual cost func- 

tion generally based on the Frobenius norm subject to a column 

normalization constraint. This is also a non-convex problem due to 

the presence of a constraint on the atoms norm. Dictionary learn- 

ing methods iteratively perform the two stages of sparse coding 

to find X and dictionary update to find D until convergence. The 

performance difference of existing overcomplete dictionary learn- 

ing methods is mainly due to differences in the dictionary up- 

date stage since most of these methods share a similar sparse 

coding stage. Besides the difference in the approach used to up- 

date the dictionary, the dictionary update can be made sequen- 

tial where each dictionary atom d i , i = 1 , . . . , K, is updated sepa- 

rately as in [14] for example or in parallel where the dictionary 

D is updated at once as in [15] . While the parallel update ap- 

proach may be preferred for its computational cost advantage, the 

sequential approach generally offers better performance because it 

produces finer-tuned dictionaries. In other algorithms, its a con- 

straint to promote incoherence of the learned dictionary D , that 

has been incorporated in the dictionary update stage [16,17] . An- 

other approach used for obtaining dictionary learning algorithms is 

to consider the convex relaxation variant of (1) obtained by replac- 

ing the � 0 -norm for sparsity with the � 1 -norm. A number of dictio- 

nary learning algorithms based on an � 1 -norm sparse coding stage 

have been proposed, among them online versions such as [18] and 

batch type version such as [19–22] . The algorithms proposed in 

[21,22] have the advantage of performing better than some state 

of the art methods with a substantially lower computational cost. 

They have the particularity of having a dictionary update stage 

where the whole row of the sparse coding matrix and associated 

dictionary atom are updated at the same time instead of updating 

only its non zero entries as in [14] . Similar to [21–23] , these al- 

gorithms are based on a penalized matrix decomposition approach 

[24,25] . Within this framework, dictionary learning algorithms that 

enforce other type of constraints obtained from a priori knowledge 

on the signal matrix can be obtained. This is for example the case 

of [11] where dictionary learning algorithms enforcing smoothness 

on the dictionary atoms via penalization and basis expansion were 

proposed for fMRI data analysis. This constraint is used to reflect 

the a priori knowledge that the fMRI signal at a fixed voxel over 

time is believed to be smooth and of low frequency. The � 1 -norm 

penalty used in the convex relaxation variant of (1) leads to the 

classical LASSO method [26] for the sparse coding stage. However, 

it is well known now that the traditional LASSO may not be fully 

efficient [27] and its model selection results could be inconsistent 

[28] . The main reason for this inconvenience is that the LASSO 

uses the same amount of shrinkage for each coefficient or code 

x i , i = 1 , . . . , K when considering the regression of y i over the dic- 

tionary D . Motivated by this shortcoming of the � 1 , a new dictio- 

nary learning algorithm which is not only computationally efficient 

but also has the advantage over the widely used existing algo- 

rithms for generating better results is proposed in this paper. It 

is derived via adaptive sequential penalized rank one matrix ap- 

proximation where a block coordinate descent approach is used 

to consistently estimate the vector pairs of the different rank one 

approximation matrices. The approach adopted for obtaining the 

proposed algorithm exploits the observation that the observed sig- 

nals can be approximated as a sum of rank one matrix approxima- 

tions [21–23] . The adaptive aspect of the algorithm allows different 

amounts of shrinkage to be used for different entries of the sparse 

code matrix X and unlike previous methods, detailed consistency 

results demonstrating the consistency of the algorithm estimates 

are provided. Furthermore, the dictionary learning algorithm has 

the advantage of having simple sparse coding and dictionary up- 

date stages as the former corresponds to a vector thresholding step 

whereas the later corresponds to matrix vector multiplication and 

each step of the algorithm generates consistent estimates. 

We begin by reviewing some background work on dictionary 

learning in Section 2 . The proposed dictionary learning algorithm 

is described in Section 3 with its consistency properties. Numerical 

experiments comparing the proposed algorithm with some stat of 

the art algorithms are presented in Section 4 . Concluding remarks 

are given in Section 5 . 

2. Background 

In this section, we briefly review some background work on � 1 - 

norm based dictionary learning and give some justifications that 

pave the way for the proposed method. 

Given a collection of centered signals Y = { y 1 , y 2 , . . . , y N } ∈ 

R 

n ×N , dictionary learning methods can be obtained by finding a 

dictionary D and a sparse representation matrix X such that 

min 

D ∈ D, X 

1 

2 

‖ Y − D X ‖ 

2 
F + λ ‖ X ‖ 1 , (2) 

where the ‖ X ‖ 1 = 

∑ K 
i =1 

∑ N 
j=1 | x i j | , ‖ . ‖ F is the Frobenius norm and 

λ is the regularization or tuning parameter controlling the amount 

of sparsity. In addition, the dictionary is constrained to belong 

to the set of feasible dictionaries defined by D = { D ∈ R 

n ×K : ‖ 
d k ‖ 2 = 1 ∀ k } , where ‖ . ‖ 2 is the l 2 norm and d k is the k th col- 

umn of D to avoid scaling ambiguity. 

A natural approach to solving problem (2) that is adopted by 

most dictionary learning algorithms is to alternate the minimiza- 

tion between the two variables; i.e.; minimizing over one variable 

while keeping the other one fixed. This leads to a two stage alter- 

nating iteration optimization scheme composed of a sparse coding 

stage to optimize X given a fixed dictionary D 

min 

X 

N ∑ 

i =1 

‖ y i − D x i ‖ 

2 
F + λ ‖ x i ‖ 1 , ∀ 1 ≤ i ≤ N. (3) 

where y i and x i are the column vectors of Y and X , respec- 

tively. The sparse coding stage problem (3) consists of a set of � 1 - 

regularized least squares problems. A number of efficient methods 

are available for solving this type of problem, among them the ho- 

motopy method [29] or coordinate descent with soft thresholding 

[30,31] . Next, the dictionary update stage where X is fixed and D 

is obtained by solving 

D = arg min 

D 
‖ Y − DX ‖ 

2 
F (4) 

followed by normalizing its columns constitutes the second stage. 

Methods used for the dictionary update stage either update 

the atoms sequentially [14] by breaking the global minimization 

(4) into K sequential minimization problems or simultaneously all 

at once [15] . Some additional constraints on D are sometimes used 

in applications to improve the performance. One such constraint is 

an upper bound on the mutual coherence of the dictionary which 

characterizes the correlation of the dictionary atoms [16,17] . In this 

widely used two stages approach the objective (1) decreases (or is 

left unchanged) at each iteration, so that convergence to a local 

minimum is guaranteed. This makes this procedure strongly de- 

pendent on the initial dictionary. The widely used starting method 

is to use a random collection of K signals from Y as initial dictio- 

nary. 

Different methods have been adopted for sequential dictionary 

learning which is the focus of this paper. Among them, the singu- 

lar value decomposition (SVD) [14] on a reduced error matrix to 

generate the atom update as follows 

{ d k , ̃  x k } = arg min 

d k , ̃ x row 
i 

‖ Y − DX ‖ 

2 
F = arg min 

d k , ̃ x row 
k 

‖ E 

R 
k − d k ̃  x 

row 

k ‖ 

2 
F . (5) 
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