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a b s t r a c t 

In radio astronomy, accurate calibration is of crucial importance for the new generation of radio inter- 

ferometers. More specifically, because of the potential presence of outliers which affect the measured 

data, robustness needs to be ensured. On the other hand, calibration is improved by taking advantage 

of these new instruments and exploiting the known structure of parameters of interest across frequency. 

Therefore, we propose in this paper an iterative robust multi-frequency calibration algorithm based on 

a distributed and consensus optimization scheme which aims to estimate the complex gains of the re- 

ceivers and the directional perturbations caused by the ionosphere. Numerical simulations reveal that 

the proposed distributed calibration technique outperforms the conventional non-robust algorithm and 

per-channel calibration. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

In radio interferometry, the easiest approach to perform calibra- 

tion is to consider one frequency bin at a time [1,2] , with a single 

centralized agent processing the data, leading to suboptimality and 

computational limitations. However, considering the specific varia- 

tion of parameters across frequency enables to add some modeling 

structure on the unknown parameters to estimate and therefore 

perform more accurately direction dependent calibration [3] , no- 

tably for the new generation of radio interferometers where multi- 

ple frequency sub-bands are present [4] . Exploiting the frequency- 

dependent response has already been studied in the context of 

bandpass solutions [5] , assuming a smooth response in frequency 

and also for direction dependent calibration with smooth polyno- 

mials [6,7] . As direction dependent perturbation effects are partic- 

ularly significant in observations with new instruments, we focus 

in this paper on the regime where the receiving elements of the ar- 

ray have a large field-of-view and possibly long baselines, resulting 

in a direction dependent calibration problem in which receptors 
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see different parts of the ionosphere [2] . We call this the direction 

dependent distortion regime. 

On the one hand, multi-frequency calibration aims to take into 

account a whole frequency range, e.g. , between 30 and 240 MHz for 

the nominal operating bandpass of the Low Frequency Array (LO- 

FAR) [8,9] . A computationally efficient way to handle the multiple 

sub-frequency bands in radio astronomy is to apply distributed and 

consensus algorithms with a decentralized strategy. In this context, 

we apply the Alternating Direction Method of Multipliers (ADMM) 

[6,10] , which is well-suited for large-scale problems as in radio in- 

terferometry. This technique is based on decomposition and coor- 

dination tasks with a group of computational agents. Each of them 

has access to a part of the data and finds a solution to a local sub- 

problem, in a restricted frequency interval. Communication with a 

fusion center enforces consensus among all agents, the goal being 

to solve a global constrained optimization problem. By collecting 

and storing data in a distributed way among different computa- 

tional agents, the global operational cost in the network is sub- 

stantially reduced. 

On the other hand, measurements are frequently affected by 

the presence of outliers due to interference or weak background 

sources. As a consequence, the noise can no longer be considered 

Gaussian as in [6] . In order to propose an alternative to [11] , where 

the noise model is based on the Student’s t distribution, in this 

work, we make use of a compound-Gaussian model which includes 
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heavy-tailed distributions [12] . This is more general and reveals 

to be more robust [13] . Therefore, to take into account the pres- 

ence of outliers and the variability of parameters across frequency, 

we propose here a Multi-frequency Robust Calibration Algorithm 

(MRCA) based on a compound-Gaussian distribution for modeling 

the noise and the consensus ADMM approach [10] . As in [14] , we 

aim at estimating physical parameters appearing in the Jones terms 

[3,15] . 

In this paper, we use the following notation: The trace and 

determinant operators are, respectively, given by tr { · } and | · |. 

The B × B identity matrix is referred by I B and || · || 2 denotes the 

l 2 norm. The symbol � represents the Kronecker product, vec( · ) 

stacks the columns of a matrix on top of one another, diag{ · } con- 

verts a vector into a diagonal matrix while bdiag{ · } is the block- 

diagonal operator. Finally, � { · } and � { · } are, respectively, the real 

and imaginary parts, [ · ] k refers to the k -th entry of the considered 

vector, arg{ · } is the argument of a complex number and j is the 

complex number whose square equals −1 . 

2. Model setup 

2.1. Direction dependent distortion regime 

An interferometer output consists of visibilities, i.e. , correlations 

of signals measured by two array elements along the correspond- 

ing baseline vector. In the noise free case, the measurements are 

given, for each frequency f ∈ F = { f 1 , . . . , f F } , by 

S [ f ] 
pq (θ

[ f ] ) = 

D ∑ 

i =1 

J [ f ] 
i,p 

(θ[ f ] ) C 

[ f ] 
i 

J [ f ] H 

i,q 
(θ[ f ] ) (1) 

where (p, q ) ∈ { 1 , . . . , M} 2 is a pair of receivers with p < q, M de- 

notes the total number of array elements and D the number of cal- 

ibrator sources, while J 
[ f ] 
i,p 

(θ[ f ] ) refers to the so-called 2 × 2 Jones 

matrix [3,15] , accounting for the perturbation effects along the 

path from the i -th source to the p -th receiver. We note θ[ f ] the un- 

known parameter vector of interest, whose elements are detailed 

further below. Finally, C 

[ f ] 
i 

is the known source brightness matrix 

of the i -th calibrator source, describing its polarization state. After 

vectorization of measurements (1) and considering the noise effect, 

we obtain the 4 × 1 data vector x 
[ f ] 
pq = vec (S 

[ f ] 
pq (θ

[ f ] )) + n 

[ f ] 
pq where 

n 

[ f ] 
pq is the noise vector for baseline ( p, q ) and vec (S 

[ f ] 
pq (θ

[ f ] )) = ∑ D 
i =1 s 

[ f ] 
i,pq 

(θ[ f ] ) in which s 
[ f ] 
i,pq 

(θ[ f ] ) = (J 
[ f ] ∗
i,q 

(θ[ f ] ) � J 
[ f ] 
i,p 

(θ[ f ] )) c [ f ] 
i 

and 

c 
[ f ] 
i 

= vec (C 

[ f ] 
i 

) . Finally, the 4 B × 1 full measurement vector at fre- 

quency f , with B = 

M (M −1) 
2 the total number of baselines, reads 

x 

[ f ] = 

[ 
x 

[ f ] T 

12 
, . . . , x 

[ f ] T 

(M−1) M 

] T 
= 

D ∑ 

i =1 

[ 
s [ f ] T 

i, 12 
(θ[ f ] ) , . . . , s [ f ] T 

i, (M−1) M 

(θ[ f ] ) 
] T 

+ 

[ 
n 

[ f ] T 

12 
, . . . , n 

[ f ] T 

(M−1) M 

] T 
. (2) 

In the direction dependent distortion regime, a particular de- 

composition of the Jones matrix is given by [15,16] 

J [ f ] 
i,p 

(θ[ f ] ) = G 

[ f ] 
p (g 

[ f ] 
p ) H 

[ f ] 
i,p 

Z 

[ f ] 
i,p 

(ϕ 

[ f ] 
i,p 

) F [ f ] 
i,p 

(ϑ 

[ f ] 
i,p 

) . (3) 

Specifically, the complex electronic gain matrix is represented by 

G 

[ f ] 
p (g 

[ f ] 
p ) = diag { g [ f ] 

p } while H 

[ f ] 
i,p 

is an assumed known matrix 

gathering the geometric delay and beam pattern [3,15] . In addition, 

propagation through the ionosphere induces two effects. The first 

one is a phase delay given by the matrix Z 

[ f ] 
i,p 

(ϕ 

[ f ] 
i,p 

) [3] , and written 

as 

Z 

[ f ] 
i,p 

(ϕ 

[ f ] 
i,p 

) = exp 

(
jϕ 

[ f ] 
i,p 

)
I 2 (4) 

where ϕ 

[ f ] 
i,p 

∝ TEC i,p / f [17] , with TEC i,p the Total Electron Content 

defined as the integrated electron density along line of sight i − p. 

The second effect is the so-called Faraday rotation [16] in (3) , given 

by 

F [ f ] 
i,p 

(ϑ 

[ f ] 
i,p 

) = 

[
cos (ϑ 

[ f ] 
i,p 

) − sin (ϑ 

[ f ] 
i,p 

) 

sin (ϑ 

[ f ] 
i,p 

) cos (ϑ 

[ f ] 
i,p 

) 

]
(5) 

where the unknown rotation angle ϑ 

[ f ] 
i,p 

∝ RM i,p / f 2 [3] and RM i,p 

is the Rotation Measure which depends on the magnetic field and 

the electron density along the path i − p. 

Therefore, the (2 MD + 2 M) × 1 complex unknown parame- 

ter vector is given by θ[ f ] = [ ε[ f ] T , g 
[ f ] T 

1 
, . . . , g 

[ f ] T 

M 

] T in which 

ε[ f ] = [ ϑ 

[ f ] 
1 , 1 

, . . . , ϑ 

[ f ] 
D,M 

, exp ( jϕ 

[ f ] 
1 , 1 

) , . . . , exp ( jϕ 

[ f ] 
D,M 

)] T refers to the 

frequency dependent per-receiver and per-source ionospheric ef- 

fects. 

2.2. Noise modeling as a compound-Gaussian distribution 

The presence of outliers has multiple causes in radio astronomy, 

such as errors in the sky model due to weak sources in the back- 

ground [11] or man-made Radio Frequency Interference (RFI) [18] , 

leading to statistics, with heavy-tailed distributions, different from 

the classical Gaussian case [1] . To ensure robustness in the pro- 

posed estimator, we adopt a two-scale compound-Gaussian noise 

modeling given for each baseline by 

n 

[ f ] 
pq = 

√ 

τ [ f ] 
pq μ[ f ] 

pq , (6) 

where the power factor τ [ f ] 
pq is a positive real random variable 

and the 4 × 1 vector μ[ f ] 
pq follows a zero-mean complex circular 

Gaussian distribution, i.e. , μ[ f ] 
pq ∼ CN (0 , �[ f ] ) 1 . Therefore, calibra- 

tion amounts to estimate for each frequency f the (2 MD + 2 M) × 1 

vector θ[ f ] describing Jones matrices, as well as B × 1 texture re- 

alizations τ[ f ] = [ τ [ f ] 
12 

, τ [ f ] 
13 

, . . . , τ [ f ] 

(M−1) M 

] T and the 4 × 4 speckle co- 

variance matrix �[ f ] (which must satisfy, e.g. , tr { �[ f ] } = 1 to avoid 

the ambiguity with the power factor, the choice of this constraint 

being arbitrary [19] ). In the following, we assume independence of 

n 

[ f ] 
pq between baselines and frequencies and no specific prior struc- 

ture exists w.r.t. f . Let us note that the algorithm can be adapted 

to perform an independent estimation of unknown parameters for 

each time interval. In order to consider different time scales for the 

unknown effects, a similar approach to the one proposed in this 

work for the multi-frequency scenario can be adopted, using spe- 

cific time variation models or assuming smoothness across time. 

3. Description of the proposed estimator 

In this section, we introduce the Relaxed Maximum Likelihood 

(RML) method. Then, the ADMM algorithm is proposed to estimate 

the frequency dependent parameters in a distributed way. In the 

iterative procedure, each subset of parameters is updated alterna- 

tively, while fixing the remaining parameters. 

3.1. Robust estimation of Jones matrices 

Robust calibration is based on the model (2) and the 

compound-Gaussian noise model (6) . Estimations are performed it- 

eratively with the ML method similar to that of [19] . Specifically, 

here, we choose not to specify the probability density function 

(pdf) of the texture parameters which are assumed unknown and 

deterministic, leading to the RML. By doing so, we ensure more 

flexibility and robustness to any prior mismatch w.r.t. the unknown 

1 It is possible to consider a baseline dependent covariance matrix �[ f ] 
pq . In this 

case, the proposed algorithm requires a few modifications which are straightfor- 

ward. 
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