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In radio astronomy, accurate calibration is of crucial importance for the new generation of radio inter-
ferometers. More specifically, because of the potential presence of outliers which affect the measured
data, robustness needs to be ensured. On the other hand, calibration is improved by taking advantage
of these new instruments and exploiting the known structure of parameters of interest across frequency.
Therefore, we propose in this paper an iterative robust multi-frequency calibration algorithm based on
a distributed and consensus optimization scheme which aims to estimate the complex gains of the re-
ceivers and the directional perturbations caused by the ionosphere. Numerical simulations reveal that
the proposed distributed calibration technique outperforms the conventional non-robust algorithm and

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In radio interferometry, the easiest approach to perform calibra-
tion is to consider one frequency bin at a time [1,2], with a single
centralized agent processing the data, leading to suboptimality and
computational limitations. However, considering the specific varia-
tion of parameters across frequency enables to add some modeling
structure on the unknown parameters to estimate and therefore
perform more accurately direction dependent calibration [3], no-
tably for the new generation of radio interferometers where multi-
ple frequency sub-bands are present [4]. Exploiting the frequency-
dependent response has already been studied in the context of
bandpass solutions [5], assuming a smooth response in frequency
and also for direction dependent calibration with smooth polyno-
mials [6,7]. As direction dependent perturbation effects are partic-
ularly significant in observations with new instruments, we focus
in this paper on the regime where the receiving elements of the ar-
ray have a large field-of-view and possibly long baselines, resulting
in a direction dependent calibration problem in which receptors
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see different parts of the ionosphere [2]. We call this the direction
dependent distortion regime.

On the one hand, multi-frequency calibration aims to take into
account a whole frequency range, e.g., between 30 and 240 MHz for
the nominal operating bandpass of the Low Frequency Array (LO-
FAR) [8,9]. A computationally efficient way to handle the multiple
sub-frequency bands in radio astronomy is to apply distributed and
consensus algorithms with a decentralized strategy. In this context,
we apply the Alternating Direction Method of Multipliers (ADMM)
[6,10], which is well-suited for large-scale problems as in radio in-
terferometry. This technique is based on decomposition and coor-
dination tasks with a group of computational agents. Each of them
has access to a part of the data and finds a solution to a local sub-
problem, in a restricted frequency interval. Communication with a
fusion center enforces consensus among all agents, the goal being
to solve a global constrained optimization problem. By collecting
and storing data in a distributed way among different computa-
tional agents, the global operational cost in the network is sub-
stantially reduced.

On the other hand, measurements are frequently affected by
the presence of outliers due to interference or weak background
sources. As a consequence, the noise can no longer be considered
Gaussian as in [6]. In order to propose an alternative to [11], where
the noise model is based on the Student’s t distribution, in this
work, we make use of a compound-Gaussian model which includes
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heavy-tailed distributions [12]. This is more general and reveals
to be more robust [13]. Therefore, to take into account the pres-
ence of outliers and the variability of parameters across frequency,
we propose here a Multi-frequency Robust Calibration Algorithm
(MRCA) based on a compound-Gaussian distribution for modeling
the noise and the consensus ADMM approach [10]. As in [14], we
aim at estimating physical parameters appearing in the Jones terms
[3,15].

In this paper, we use the following notation: The trace and
determinant operators are, respectively, given by tr {-} and |-|.
The B x B identity matrix is referred by Iz and ||-||, denotes the
I, norm. The symbol ® represents the Kronecker product, vec(-)
stacks the columns of a matrix on top of one another, diag{ -} con-
verts a vector into a diagonal matrix while bdiag{-} is the block-
diagonal operator. Finally, ®{-} and 3{-} are, respectively, the real
and imaginary parts, [ - |, refers to the k-th entry of the considered
vector, arg{-} is the argument of a complex number and j is the
complex number whose square equals —1.

2. Model setup
2.1. Direction dependent distortion regime

An interferometer output consists of visibilities, i.e., correlations
of signals measured by two array elements along the correspond-
ing baseline vector. In the noise free case, the measurements are
given, for each frequency f e F = {fi,..., fr}, by

D
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i=1
where (p,q) € {1, ..., M}? is a pair of receivers with p<gq, M de-
notes the total number of array elements and D the number of cal-
ibrator sources, while Jl[.g (0171 refers to the so-called 2 x 2 Jones
matrix [3,15], accounting for the perturbation effects along the
path from the i-th source to the p-th receiver. We note 811 the un-
known parameter vector of interest, whose elements are detailed
further below. Finally, CI[.f I'is the known source brightness matrix
of the i-th calibrator source, describing its polarization state. After
vectorization of measurements (1) and considering the noise effect,
we obtain the 4 x 1 data vector x[pf;] = vec(Sy;] o) + n[pfq] where

ny;] is the noise vector for baseline (p, q) and vec(SLf;](f)[f])) =
D (lf] ; ; [f] [fT* [f] [f]
> siypq(O[f]) in which si,pq(olf]) = U (L)) ®Ji1p(0[f]))ci and
cl[f] = vec(Cl[.f]). Finally, the 4B x 1 full measurement vector at fre-
quency f, with B = W the total number of baselines, reads
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In the direction dependent distortion regime, a particular de-
composition of the Jones matrix is given by [15,16]

1509 = 6l @iz (ol hES o). (3)
Specifically, the complex electronic gain matrix is represented by
ngf] (gg,f]) = diag{gg,f]} while HEfpl is an assumed known matrix
gathering the geometric delay and beam pattern [3,15]. In addition,
propagation through the ionosphere induces two effects. The first
one is a phase delay given by the matrix ZEQ (901'[,{;]) [3], and written
as

2ol = exp (Jgl 1o (4)

where (p,.[g o TEC; p/ f [17], with TEC;, the Total Electron Content
defined as the integrated electron density along line of sight i — p.

The second effect is the so-called Faraday rotation [16] in (3), given

by
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where the unknown rotation angle 19}_{)1 [0 RM,zip/f2 [3] and RM;,
is the Rotation Measure which depends on the magnetic field and
the electron density along the path i — p.

Therefore, the (2MD+2M) x1 complex unknown parame-

ter vector is given by O[f]:[e[f]T,g[lf]T,...,gM]T]T in which
elf] :[19{{1],...,ﬁ[[)f,{l,exp(jwﬂ),...,exp(jwl[)f}\d)]T refers to the
frequency dependent per-receiver and per-source ionospheric ef-
fects.

2.2. Noise modeling as a compound-Gaussian distribution

The presence of outliers has multiple causes in radio astronomy,
such as errors in the sky model due to weak sources in the back-
ground [11] or man-made Radio Frequency Interference (RFI) [18],
leading to statistics, with heavy-tailed distributions, different from
the classical Gaussian case [1]. To ensure robustness in the pro-
posed estimator, we adopt a two-scale compound-Gaussian noise
modeling given for each baseline by

[f] [f1 ,,1f]
NGy =/ Tpg Mpg: (6)

where the power factor r},’;] is a positive real random variable
and the 4 x 1 vector [LL{I] follows a zero-mean complex circular

Gaussian distribution, i.e., [qu] ~ CN(0, U1, Therefore, calibra-
tion amounts to estimate for each frequency f the (2MD + 2M) x 1
vector @1 describing Jones matrices, as well as Bx 1 texture re-

alizations 7lf1 = [‘Eg], ‘L'g], o r([,’;,]_UM]T and the 4 x 4 speckle co-

variance matrix QU] (which must satisfy, e.g., tr{Qf1} = 1 to avoid
the ambiguity with the power factor, the choice of this constraint
being arbitrary [19]). In the following, we assume independence of
n;,j;] between baselines and frequencies and no specific prior struc-
ture exists w.r.t. f. Let us note that the algorithm can be adapted
to perform an independent estimation of unknown parameters for
each time interval. In order to consider different time scales for the
unknown effects, a similar approach to the one proposed in this
work for the multi-frequency scenario can be adopted, using spe-
cific time variation models or assuming smoothness across time.

3. Description of the proposed estimator

In this section, we introduce the Relaxed Maximum Likelihood
(RML) method. Then, the ADMM algorithm is proposed to estimate
the frequency dependent parameters in a distributed way. In the
iterative procedure, each subset of parameters is updated alterna-
tively, while fixing the remaining parameters.

3.1. Robust estimation of Jones matrices

Robust calibration is based on the model (2) and the
compound-Gaussian noise model (6). Estimations are performed it-
eratively with the ML method similar to that of [19]. Specifically,
here, we choose not to specify the probability density function
(pdf) of the texture parameters which are assumed unknown and
deterministic, leading to the RML. By doing so, we ensure more
flexibility and robustness to any prior mismatch w.r.t. the unknown

T It is possible to consider a baseline dependent covariance matrix S]lpf;] In this
case, the proposed algorithm requires a few modifications which are straightfor-
ward.



Download English Version:

https://daneshyari.com/en/article/6957065

Download Persian Version:

https://daneshyari.com/article/6957065

Daneshyari.com


https://daneshyari.com/en/article/6957065
https://daneshyari.com/article/6957065
https://daneshyari.com

