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a b s t r a c t 

The performance degradation problem of the angle of arrival (AOA)-based acoustic localization methods 

in the presence of unreliable bearing measurements (outliers) is addressed in this paper. Two typical M- 

estimators based on Tukey and Huber functions are applied to tackle the problem. Both functions are 

solved by the iterative reweighted nonlinear least squares (IRNLS) method. Considering the Huber func- 

tion is convex in nature, it is specifically utilized to mitigate the influence of large residuals on pseudolin- 

ear estimator (PLE) by convex optimization. To make the IRNLS method more feasible to use, an approx- 

imate relationship between the outlier probability and the bound parameter is provided. The robustness 

and effectiveness of the proposed methods are clearly demonstrated through a series of simulation results 

in the presence of various unreliable measurements. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The angle of arrival (AOA), also named bearing, based acous- 

tic source localization technique has been successfully applied in 

many promising applications, such as security, telecommunica- 

tion and environmental monitoring [1–3] . As a hot research topic, 

many effective approaches have been proposed, such as maximum 

likelihood estimator (MLE) [4] , pseudolinear estimator (PLE) [5] , 

reduced-bias PLE [6] , approximate maximum likelihood (AML) [7] , 

extended Kalman filtering [8,9] and total least squares (TLS) [10] . 

Among these methods, MLE and PLE are most commonly used 

methods. MLE is an asymptotically unbiased and efficient estima- 

tor, but it does not have a closed-form solution and has to be im- 

plemented in an iterative search way [4] . PLE which does not re- 

quire a Gaussian noise assumption is simple to implement with 

lower complexity. Though PLE suffers from bias, it can be over- 

come by the bias compensation methods [6] . 

With the progresses in sensor technology, people start to uses 

a large amount of low cost sensor nodes for sound source localiza- 

tion in unknown fields [11,12] . Theoretically speaking, if the back- 

ground noise in the field follows the Gaussian distribution, both 

PLE and MLE perform well, even though Gaussian noise is not al- 

ways strictly required by PLE. However, the distributed sensors of- 

ten encounter unexpected interferences [13] , such as external at- 

tacks, natural causes (wind or storm for example), or sensor fail- 
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ures, etc. On the other hand, the low cost sensor nodes are usu- 

ally made with stringent resource in transmission power, AD sam- 

pling resolution, or computational capacity, etc. These interferences 

and limitations may result in many unreliable measurements or 

called outliers. As a result, the above-mentioned traditional AOA- 

based methods fail to provide reasonable estimates when outliers 

are present. 

One way to solve outlier problem is to identify them, then re- 

move them. A least squares estimator that leverages the hybrid 

estimate method of AOA and TOA has been used to detect the 

NLOS signal [14] . By assuming that the reliable sensors are ex- 

pected to behave similarly, the Bayesian method is proposed to 

identify unreliable sensors from a given set of sensors [15] . A dis- 

tributed localization approach based on expectation maximization 

(EM) method is developed when sensor failure happens [16] . The 

EM based method is also introduced to attain the accurate local- 

ization results for AOA based localization method by identifying 

the unreliable measurements from NLOS propagation environment 

[17] . The unreliable bearing measurements method is presented by 

detecting the outliers from a set of estimated positions obtained 

by different sensor combinations [18] . 

Another typical way is incorporating all the measurements into 

a robust estimator against outliers. A well-known robust estimator 

is the M-estimator, which has been widely used to process outlier 

problems for robust registration of point sets [19] , linear regression 

[20] and robust estimation of diffusion magnetic resonance param- 

eters [21] . For acoustic source localization problems, a bi-square 

M-estimation has been proposed to estimate the acoustic source 
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Fig. 1. I Illustration of an AOA localization system using three sensors. 

location with outlier-corrupted sensor observations in an energy- 

based localization method [22] . The M-estimator has been intro- 

duced into the extended Kalman filter based on the time difference 

of arrival (TDOA) method to solve the NLOS mitigation problem 

[23] . Chen describes a robust least-mean-M-estimate algorithm to 

estimate the time delay in case of multichannel propagation [24] . 

Note that specific methods to estimate the accurate AOAs for non- 

Gaussian channel before localization are outside the scope of this 

paper; interested readers are referred to [25–29] . 

The motivation of this paper is to propose a robust localization 

method to reduce the influence of unreliable AOA measurements 

caused by uncertain environments. The main contributions can be 

summarized as follows: 

• The performances of the traditional localization methods using 

the Non-Linear Estimator (NLE) and the Pseudo Linear Estima- 

tor (PLE) are analyzed when these estimators are subject to the 

AOA outliers. 
• Two estimators based on Tukey and Huber function, respec- 

tively, are proposed to decrease the influence of the AOA out- 

liers for NLE, and Huber function is addressed for HPLE. 
• To make the new estimators easy to use, a threshold determi- 

nation method based on the outlier probability is designed and 

verified through a series of simulations. 

This paper is organized as follows. In Section 2 , the traditional 

AOA based localization methods are reviewed, with an emphasis 

on the influence of unreliable bearings on the localization perfor- 

mance. Section 3 provides the uncertain model for AOA measure- 

ments. Both the Tukey and Huber estimators are proposed to solve 

the outlier problem for NLE, the Huber function is also applied to 

solve the outlier problem for PLE. Section 4 presents the proper 

bound parameter determination method for the proposed meth- 

ods; the localization performances of our proposed methods and 

several traditional methods are compared using numerical experi- 

ments. The conclusions are discussed in Section 5 . 

2. AOA based localization methods and problem formulation 

2.1. Angle of arrival model with gaussian noise 

As shown in Fig. 1 , in this paper, we consider an acoustic local- 

ization system with a single stationary acoustic source located at 

T = [ x, y ] T and multiple sensors, located at s k = [ x k , y k ] 
T , k = 1, 2,…, 

N . Ideally, the true bearing θk can be expressed as: 

θk = arctan 

(
y − y k 
x − x k 

)
, k = 1 , ..., N. (1) 

The observations are usually subject to measurement noise: 

ˆ θk = θk + ε k , k = 1 , ..., N, (2) 

where ε k are assumed to be independent zero-mean Gaussian 

noise with variance σ 2 
k 

. The set of measurements from N sensors 

can be written in vector form as 

ˆ θ= θ+ ε , (3) 

where ˆ θ = [ ̂  θ1 
ˆ θ2 ... ˆ θN ] 

T , θ = [ θ1 θ2 ... θN ] 
T , and ε = 

[ ε 1 ε 2 ... ε N ] 
T . 

2.2. Maximum likelihood estimator and its outlier effect 

Under the Gaussian noise assumption, the likelihood function of 

the bearing observations can be given by 

f ( ̂  θ
∣∣∣T ) = 

1 

( 2 π) 
N/ 2 | Q | 1 / 2 exp 

{ 

−1 

2 

( ̂  θ − θ(T )) 
T 
Q 

−1 ( ̂  θ − θ(T )) 
} 

, 

(4) 

where Q is the N × N covariance matrix of bearing observation er- 

rors 

Q = diag (σ 2 
1 , σ

2 
2 , ..., σ

2 
N ) . (5) 

The target position, ˆ T ML , can be obtained by maximizing the 

likelihood function (4) . Typically, the log- function of (4) is used 

to simplify the maximization problem: 

ln f ( ̂  θ
∣∣∣T ) = −1 

2 

ln 

(
( 2 π) 

N | T | )− 1 

2 

( ̂  θ − θ(T )) T Q 

−1 ( ̂  θ − θ(T )) . (6) 

The maximization of (6) can be obtained by minimizing the 

second term of (6) [4] 

ˆ T ML = arg min L ML (T ) , (7) 

where 

L ML (T ) = ( ̂  θ − θ(T )) T Q 

−1 ( ̂  θ − θ(T )) . (8) 

A simple gradient-descent approach can be used to solve (8) re- 

cursively: 

T ( k + 1 ) = T (k ) − μ
∂ L ML (T ) 

∂T 

∣∣∣∣
x = x (k ) 

, k = 0 , 1 , ..., (9) 

where μ > 0 denotes a small step size, T (0) is the initial position 

of the sound source. The iterations are stopped when the gradient 

term is sufficiently close to zero. 

The Cramér-Rao lower bound (CRLB), which is equal to the 

inverse of the Fisher information matrix (FIM), provides a per- 

formance lower bound for the asymptotically unbiased estimator 

[30,31] . The FIM for MLE can be given by [30] 

F = 

⎡ 

⎢ ⎣ 

N ∑ 

k =1 

cos 2 θk 

r 2 
k 
σ 2 

k 

− 1 
2 

N ∑ 

k =1 

sin 2 θk 

r 2 
k 
σ 2 

k 

− 1 
2 

N ∑ 

k =1 

sin 2 θk 

r 2 
k 
σ 2 

k 

N ∑ 

k =1 

sin 2 θk 

r 2 
k 
σ 2 

k 

⎤ 

⎥ ⎦ 

. (10) 

The determinant of FIM can be obtained by 

det (F ) = 

1 

4 

⎧ ⎨ 

⎩ 

( 

N ∑ 

k =1 

1 

r 2 
k 
σ 2 

k 

) 2 

−
( 

N ∑ 

k =1 

cos 2 θk 

r 2 
k 
σ 2 

k 

) 2 

−
( 

N ∑ 

k =1 

sin 2 θk 

r 2 
k 
σ 2 

k 

) 2 
⎫ ⎬ 

⎭ 

, 

(11) 

det (F ) = 

∑ 

S 

sin 

2 ( θi − θ j ) 

r 2 
i 
r 2 

j 
σ 2 

k 
σ 2 

k 

, j > i. (12) 

S = { (i, j) } is the set of all combinations of i and j , with i, j ∈ 

{ 1 , 2 , ..., N} and j > i. From (12) , we can see that the FIM determi- 

nant is approximately inversely proportional to the variance of the 
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