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The performance degradation problem of the angle of arrival (AOA)-based acoustic localization methods
in the presence of unreliable bearing measurements (outliers) is addressed in this paper. Two typical M-
estimators based on Tukey and Huber functions are applied to tackle the problem. Both functions are
solved by the iterative reweighted nonlinear least squares (IRNLS) method. Considering the Huber func-
tion is convex in nature, it is specifically utilized to mitigate the influence of large residuals on pseudolin-
ear estimator (PLE) by convex optimization. To make the IRNLS method more feasible to use, an approx-
imate relationship between the outlier probability and the bound parameter is provided. The robustness
and effectiveness of the proposed methods are clearly demonstrated through a series of simulation results
in the presence of various unreliable measurements.
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1. Introduction

The angle of arrival (AOA), also named bearing, based acous-
tic source localization technique has been successfully applied in
many promising applications, such as security, telecommunica-
tion and environmental monitoring [1-3]. As a hot research topic,
many effective approaches have been proposed, such as maximum
likelihood estimator (MLE) [4], pseudolinear estimator (PLE) [5],
reduced-bias PLE [6], approximate maximum likelihood (AML) [7],
extended Kalman filtering [8,9] and total least squares (TLS) [10].
Among these methods, MLE and PLE are most commonly used
methods. MLE is an asymptotically unbiased and efficient estima-
tor, but it does not have a closed-form solution and has to be im-
plemented in an iterative search way [4]. PLE which does not re-
quire a Gaussian noise assumption is simple to implement with
lower complexity. Though PLE suffers from bias, it can be over-
come by the bias compensation methods [6].

With the progresses in sensor technology, people start to uses
a large amount of low cost sensor nodes for sound source localiza-
tion in unknown fields [11,12]. Theoretically speaking, if the back-
ground noise in the field follows the Gaussian distribution, both
PLE and MLE perform well, even though Gaussian noise is not al-
ways strictly required by PLE. However, the distributed sensors of-
ten encounter unexpected interferences [13], such as external at-
tacks, natural causes (wind or storm for example), or sensor fail-
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ures, etc. On the other hand, the low cost sensor nodes are usu-
ally made with stringent resource in transmission power, AD sam-
pling resolution, or computational capacity, etc. These interferences
and limitations may result in many unreliable measurements or
called outliers. As a result, the above-mentioned traditional AOA-
based methods fail to provide reasonable estimates when outliers
are present.

One way to solve outlier problem is to identify them, then re-
move them. A least squares estimator that leverages the hybrid
estimate method of AOA and TOA has been used to detect the
NLOS signal [14]. By assuming that the reliable sensors are ex-
pected to behave similarly, the Bayesian method is proposed to
identify unreliable sensors from a given set of sensors [15]. A dis-
tributed localization approach based on expectation maximization
(EM) method is developed when sensor failure happens [16]. The
EM based method is also introduced to attain the accurate local-
ization results for AOA based localization method by identifying
the unreliable measurements from NLOS propagation environment
[17]. The unreliable bearing measurements method is presented by
detecting the outliers from a set of estimated positions obtained
by different sensor combinations [18].

Another typical way is incorporating all the measurements into
a robust estimator against outliers. A well-known robust estimator
is the M-estimator, which has been widely used to process outlier
problems for robust registration of point sets [19], linear regression
[20] and robust estimation of diffusion magnetic resonance param-
eters [21]. For acoustic source localization problems, a bi-square
M-estimation has been proposed to estimate the acoustic source
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Fig. 1. I Illustration of an AOA localization system using three sensors.

location with outlier-corrupted sensor observations in an energy-
based localization method [22]. The M-estimator has been intro-
duced into the extended Kalman filter based on the time difference
of arrival (TDOA) method to solve the NLOS mitigation problem
[23]. Chen describes a robust least-mean-M-estimate algorithm to
estimate the time delay in case of multichannel propagation [24].
Note that specific methods to estimate the accurate AOAs for non-
Gaussian channel before localization are outside the scope of this
paper; interested readers are referred to [25-29].

The motivation of this paper is to propose a robust localization
method to reduce the influence of unreliable AOA measurements
caused by uncertain environments. The main contributions can be
summarized as follows:

o The performances of the traditional localization methods using
the Non-Linear Estimator (NLE) and the Pseudo Linear Estima-
tor (PLE) are analyzed when these estimators are subject to the
AOA outliers.

e Two estimators based on Tukey and Huber function, respec-
tively, are proposed to decrease the influence of the AOA out-
liers for NLE, and Huber function is addressed for HPLE.

o To make the new estimators easy to use, a threshold determi-
nation method based on the outlier probability is designed and
verified through a series of simulations.

This paper is organized as follows. In Section 2, the traditional
AOA based localization methods are reviewed, with an emphasis
on the influence of unreliable bearings on the localization perfor-
mance. Section 3 provides the uncertain model for AOA measure-
ments. Both the Tukey and Huber estimators are proposed to solve
the outlier problem for NLE, the Huber function is also applied to
solve the outlier problem for PLE. Section 4 presents the proper
bound parameter determination method for the proposed meth-
ods; the localization performances of our proposed methods and
several traditional methods are compared using numerical experi-
ments. The conclusions are discussed in Section 5.

2. AOA based localization methods and problem formulation
2.1. Angle of arrival model with gaussian noise

As shown in Fig. 1, in this paper, we consider an acoustic local-
ization system with a single stationary acoustic source located at
T = [x,y]" and multiple sensors, located at s; = [x, ¥;]T, k=1, 2,...,
N. Ideally, the true bearing 6, can be expressed as:

6y = arctan (jﬂ),k:l,“.,N. (1)

— Xk

The observations are usually subject to measurement noise:
O =6+ e k=1,..,N, 2)

where g, are assumed to be independent zero-mean Gaussian
noise with variance akz. The set of measurements from N sensors
can be written in vector form as

0=0-+¢, (3)

where 0 =[9, 6, NI, 0=[01 6,

[8] &y SN]T.
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2.2. Maximum likelihood estimator and its outlier effect

Under the Gaussian noise assumption, the likelihood function of
the bearing observations can be given by

) —5@-om)'e @-o),

(4)

where Q is the N x N covariance matrix of bearing observation er-
rors

Q=diag(oZ, 02, ....07). (5)

The target position, Ty, can be obtained by maximizing the
likelihood function (4). Typically, the log- function of (4) is used
to simplify the maximization problem:
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The maximization of (6) can be obtained by minimizing the
second term of (6) [4]

T = argmin Ly (T), (7)
where
Ly (T) = (8 — 6(T))"™Q " (8 — 6(T)). (8)

A simple gradient-descent approach can be used to solve (8) re-
cursively:
Ly (T
i%%l k=01, ..., 9)
x=x(k)

T(k+1)=Tk) — p

where i > 0 denotes a small step size, T(0) is the initial position
of the sound source. The iterations are stopped when the gradient
term is sufficiently close to zero.

The Cramér-Rao lower bound (CRLB), which is equal to the
inverse of the Fisher information matrix (FIM), provides a per-
formance lower bound for the asymptotically unbiased estimator
[30,31]. The FIM for MLE can be given by [30]
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The determinant of FIM can be obtained by
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S=1{(,j)} is the set of all combinations of i and j, with i, j e
{1,2,...,N} and j>i. From (12), we can see that the FIM determi-
nant is approximately inversely proportional to the variance of the
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