
Signal Processing 152 (2018) 35–46 

Contents lists available at ScienceDirect 

Signal Processing 

journal homepage: www.elsevier.com/locate/sigpro 

Perturbation-based regularization for signal estimation in linear 

discrete ill-posed problems 

Mohamed A. Suliman 

∗, Tarig Ballal , Tareq Y. Al-Naffouri 

King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal, 

23955-6900, Saudi Arabia 

a r t i c l e i n f o 

Article history: 

Received 12 October 2017 

Revised 26 March 2018 

Accepted 6 May 2018 

Available online 12 May 2018 

Keywords: 

Linear estimation 

Ill-posed problems 

Linear least squares 

Regularization 

Perturbed models 

a b s t r a c t 

Estimating the values of unknown parameters in ill-posed problems from corrupted measured data 

presents formidable challenges in ill-posed problems. In such problems, many of the fundamental es- 

timation methods fail to provide meaningful stabilized solutions. In this work, we propose a new reg- 

ularization approach combined with a new regularization-parameter selection method for linear least- 

squares discrete ill-posed problems called constrained perturbation regularization approach (COPRA). The 

proposed COPRA is based on perturbing the singular-value structure of the linear model matrix to en- 

hance the stability of the problem solution. Unlike many regularization methods that seek to minimize 

the estimated data error, the proposed approach is developed to minimize the mean-squared error of 

the estimator, which is the objective in many estimation scenarios. The performance of the proposed ap- 

proach is demonstrated by applying it to a large set of real-world discrete ill-posed problems. Simulation 

results show that the proposed approach outperforms a set of benchmark regularization methods in most 

cases. In addition, the approach enjoys the shortest runtime and offers the highest level of robustness of 

all the tested benchmark regularization methods. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

We consider the standard problem of recovering an unknown 

signal x 0 ∈ R 

n from a vector y ∈ R 

m of noisy, linear observations 

given by 

y = Ax 0 + z , (1) 

where A ∈ R 

m ×n is a known linear-model matrix, and z ∈ R 

m ×1 is 

a vector of additive white Gaussian noise (AWGN) with unknown 

variance σ 2 
z that is independent of x 0 . This problem has been ex- 

tensively studied because of its practical and theoretical impor- 

tance in many fields of science and engineering, e.g., communica- 

tion, signal processing, computer vision, control theory, and eco- 

nomics [1–3] . 

Over the past years, several mathematical tools have been de- 

veloped for estimating the unknown vector x 0 . The most promi- 

nent approach is the ordinary least-squares (OLS) estimator [4] , 

which finds an estimate ˆ x OLS of x 0 by minimizing the Euclidean 
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norm of the estimator residual error, i.e., 

ˆ x OLS = arg min 

x 
‖ y − Ax ‖ 

2 
2 . (2) 

If A is a full column rank matrix, then (2) has the unique solution 

ˆ x OLS = 

(
A 

T A 

)−1 
A 

T y = V �−1 
U 

T y , (3) 

where A = U �V 

T = 

∑ n 
i =1 σi u i v 

T 
i 

is the singular value decomposi- 

tion (SVD) of A; u i and v i are the left and right orthogonal sin- 

gular vectors, respectively, and the singular values σ i are assumed 

to satisfy σ 1 ≥σ 1 ≥ ��� ≥σ n . 

Despite being a popular approach, the OLS estimator suffers 

when it is applied to discrete ill-posed problems. A problem is con- 

sidered well-posed when its solution always exists, is unique, and 

depends continuously on the initial data. Ill-posed problems fail to 

satisfy at least one of these conditions [5] . The matrix A of an ill- 

posed problem is ill-conditioned and the computed OLS solution in 

(3) is potentially very sensitive to perturbations in the data such as 

z [6] . 

Discrete ill-posed problems arise in a variety of applications in 

signal processing and computer vision [7–10] , computerized to- 

mography [11] , astronomy [12] , image restoration and deblurring 

[13,14] , and edge detection [15] . Interestingly, in all these applica- 

tions, the data are gathered by convoluting a noisy signal with a 

detector [16,17] . A linear representation of such process is given by 
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∫ b 2 

b 1 

a ( s, t ) x 0 ( t ) dt = y 0 ( s ) + z ( s ) = y ( s ) , (4) 

where y 0 ( s ) is the true signal, and the kernel function a ( s, t ) rep- 

resents the response. It is shown in [18] how a problem with a 

formulation similar to (4) fails to satisfy the well-posed conditions 

introduced above. The discretized version of (4) can be represented 

by (1) . 

To solve ill-posed problems, regularization methods, such as 

truncated SVD [19] , hybrid methods [20] , the covariance-shaping 

LS estimator [21] , and the weighted LS estimator [22] , are com- 

monly used. These methods are based on leveraging additional 

known information into the solution of the problem and replac- 

ing the ill-posed problem with a well-posed one. This replacement 

should be done after carefully analyzing the ill-posed problem in 

terms of its physical plausibility and mathematical properties. 

The most common and widely used approach is the regularized 

M-estimator that obtains an estimate ˆ x of x 0 by solving the convex 

problem 

ˆ x := arg min 

x 
L ( y − Ax ) + γ f ( x ) , (5) 

where the loss function L : R 

m → R measures the fit of Ax to the 

observation vector y , the penalty function f : R 

m → R establishes 

the structure of x , and γ provides a balance between the two func- 

tions. Different choices of L and f distinguish the different estima- 

tion techniques. The most popular technique is the Tikhonov regu- 

larization [23] which is given in its simplified form by 

ˆ x RLS := arg min 

x 
|| y − Ax || 2 2 + γ || x || 2 2 . (6) 

The solution to (6) is given by the regularized least-square (RLS) 

estimator, 

ˆ x RLS = 

(
A 

T A + γ I n 
)−1 

A 

T y , (7) 

where I n is an n × n identity matrix. In general, γ is unknown and 

must be chosen judiciously. 

Several methods have been proposed to select the value of the 

regularization parameter γ . These include the generalized cross 

validation (GCV) [24] , L-curve [25,26] , and quasi-optimal method 

[27] . A survey of regularization parameter selection methods is 

given in [28] . The GCV method obtains the regularizer γ by mini- 

mizing the GCV function, which suffers from a very flat minimum 

that is challenging to locate numerically. The L-curve method, on 

the other hand, is a graphical tool with a very high computational 

complexity. Finally, the quasi-optimal method does not take noise 

level into account. In general, the performance of these methods 

varies significantly depending on the nature of the problem. 

1.1. Paper contributions 

The contributions of this paper can be summarized as follows: 

1. New regularization approach : We propose a new approach for 

linear discrete ill-posed problems that is based on adding an ar- 

tificial perturbation matrix with a bounded norm to the model 

matrix A . The objective of this artificial perturbation is to im- 

prove the singular-value structure of A . This perturbation af- 

fects the fidelity of the model y = Ax 0 + z ; as a result, the 

equality relation becomes invalid. We show that using such a 

modification provides a solution with better numerical stabil- 

ity. 1 

1 The work presented in this paper is an extended version of [29] . 
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Fig. 1. Singular-value decay pattern of an ill-posed matrix, A ∈ R 50 ×50 . 

2. New regularization-parameter selection method : We develop a 

new approach for selecting a regularization parameter that 

minimizes the mean-squared error (MSE) between x 0 and its 

estimate ˆ x , i.e., E || ̂ x − x 0 || 2 2 
. 2 

3. Generality : A key feature of the approach is that it does not im- 

pose any prior assumptions on x 0 . The vector x 0 can be deter- 

ministic or stochastic and, in the later case, we do not assume 

any prior statistical knowledge. In addition, knowledge of the 

noise variance σ 2 
z is not required. This makes the proposed ap- 

proach applicable to a large number of linear discrete ill-posed 

problems. 

1.2. Paper organization 

This paper is organized as follows. In Section 2 , we present the 

formulation of the problem and derive the solution. In Section 3 , 

we derive the artificial perturbation bound that minimizes the 

MSE. Further, we derive the characteristic equation of the proposed 

approach which is used to obtain the regularization parameter. In 

Section 4 , we study the properties of the characteristic equation, 

and in Section 5 we present the performance of the proposed ap- 

proach based on simulation results. Finally, concluding remarks are 

given in Section 6 . 

1.3. Notations 

Matrices are denoted by boldface uppercase letters (e.g., X ). Col- 

umn vectors are represented by boldface lowercase letters (e.g., x ). 

The notation ( ·) T denotes the transpose operator, E ( ·) denotes the 

expectation operator, while I n and 0 denote the ( n × n ) identity 

matrix and the zero matrix, respectively. The notation || ·|| 2 indi- 

cates the spectral norm for matrices and the Euclidean norm for 

vectors. The operator diag( ·) returns a vector that contains either 

the diagonal elements of a matrix, or a diagonal matrix if it oper- 

ates on a vector where the diagonal entries of the matrix are the 

elements of that vector. 

2. Proposed regularization approach 

2.1. Background 

We consider the linear discrete ill-posed problem in (1) with- 

out imposing any assumptions on x 0 . As stated above, matrix A 

is ill-conditioned and may have a very fast singular-value decay 

[31] . In Fig. 1 , we observe that the singular values of matrix A de- 

2 Little work on MSE-based estimators is available in the literature; for example, 

in [30] the authors derived an estimator for the linear model problem that was 

based on minimizing the worst-case MSE (as opposed to the actual MSE) while im- 

posing a constraint on the unknown vector x 0 . 
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