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a b s t r a c t

We consider a reach–avoid specification for a stochastic hybrid dynamical system defined as reaching
a goal set at some finite time, while avoiding an unsafe set at all previous times. In contrast with earlier
workswhich consider the target and avoid sets as deterministic, we consider these sets to be probabilistic.
An optimal control policy is derived which maximizes the reach–avoid probability. Special structure on
the stochastic sets is exploited to make the computation tractable for large space dimensions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic Hybrid System (SHS) models provide a framework
for the analysis and design of complex dynamical systems. While
reachability and safety analysis for deterministic systems have
been well-studied (Aubin, 1991; Lygeros, 2004; Tomlin, Mitchell,
Bayen, & Oishi, 2003), these problems for SHS are recently being
explored. In the continuous time setting, early contributions to SHS
theory include the works of Davis (1993) and Ghosh, Arapostathis,
and Marcus (1997), with (Bujorianu & Lygeros, 2003) establishing
a theoretical foundation for themeasurability of events for reacha-
bility problems. Because technical issues such as measurability are
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easier to handle in the discrete time setting, Discrete Time Stochas-
tic Hybrid System (DTSHS) models have recently attracted consid-
erable attention. In particular, probabilistic reachability of DTSHS
has recently been addressed in Abate, Prandini, Lygeros, and Sastry
(2008), Ramponi, Chatterjee, Summers, and Lygeros (2010), Sum-
mers, Kamgarpour, Tomlin, and Lygeros (2011) and Summers and
Lygeros (2010) based on a theoretical foundation for discrete time
stochastic optimal control (Bertsekas & Shreve, 2007).

In Summers et al. (2011), we extended the results of Abate et al.
(2008) and Summers and Lygeros (2010) on verification of stochas-
tic hybrid systems to cope with the existence of uncertainty in the
reachability specifications themselves. In particular,we considered
the problem ofmaximizing the probability that a system trajectory
will hit a target set while avoiding an unsafe set where the safe set
was allowed to be random and time-varying. The proof was omit-
ted due to space.

Since the work in Summers et al. (2011) set up the theoretical
framework for several applications, we dedicate this paper mainly
to the proof of the result in Summers et al. (2011). At the same time,
we consider a slightly more general framework in which both the
safe and target sets are random, time-varying and parametrized
by stochastic processes. While our emphasis is on the theory, we
demonstrate the applicability of the framework with a small scale
example. Please refer to Summers et al. (2011) for an example in air
traffic scenario and Kariotoglou, Raimondo, Summers, and Lygeros
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(2011) for applications in camera networks, both of which are of
larger space dimensions.

2. Stochastic sets for reach–avoid problem

Let the state space of the discrete time stochastic hybrid system
DTSHS, be represented by a hybrid setX :=


q∈Q{q}×Rn(q), where

the discrete state space is Q := {1, 2, . . . ,m}, m ∈ N and the map
n : Q → N assigns to each discrete state q ∈ Q the dimension
of the continuous state space Rn(q). We endow the set Q with the
discrete topology, Euclidean spaces with the Euclidean topology,
and the set X with the corresponding product topology. As usual,
the DTSHS as defined is more generally characterized as a Markov
Decision Process. Throughout, let B(·) denote the Borel σ -algebra
of the topological space.

We define a parametrized stochastic set-valued process as fol-
lows. Let Y ⊂ Ro for o ∈ N denote a parameter space. For k =

0, 1, 2, . . . ,N , let Gk be a Borel-measurable stochastic kernel on
Y given Y , Gk : B(Y ) × Y → [0, 1], which assigns to each y ∈

Y a probability measure Gk(·|y) on the Borel space (Y ,B(Y )). A
stochastic set is henceforth defined as a Borel measurable set-
valued function γ : Y → B(X) together with a Markov process
{yk}k∈N in the parameter space Y with transition probability func-
tion Gk : B(Y )× Y → [0, 1].

Let A be a compact Borel set representing the input space and
define the controlled transition probability function Q : B(X) ×

X × A → [0, 1], that is, Q (·|x, a) assigns a probability measure on
B(X) for each hybrid state x ∈ X and input a ∈ A. By appropriate
selection of Q one can encode a wide range of hybrid dynamics,
including autonomous and forced transitions. Let x̄ = (x, y) be the
augmented state in X̄ = X×Y , the augmented state space. Further,
let us define the stochastic transition kernels Q̄k : B(X̄)× X̄ ×A →

[0, 1]:

Q̄k(dx̄′
|x̄, a) = Q (dx′

|x, a)Gk(dy′
|y).

We call the resulting stochastic process an Augmented Discrete-
Time Stochastic Hybrid System (ADTSHS) H̄ . The ADTSHS kernel is
time varying, due to the kernel Gk, factorizes to a product of two
stochastic kernels on the hybrid state and the parameter spaces,
and depends on the control variable a ∈ A only through the DTSHS
kernel. The latter two properties are critical to the numerically
tractable algorithm provided here. We define a Markov policy for
this process as follows.

Definition 1. A Markov policy for H̄ is a sequence µ = (µ0, µ1,
. . . , µN−1) of universally measurable maps µk : X̄ → A, k = 0,
1, . . . ,N − 1. The set of all admissible Markov policies is denoted
by M̄.

Given aMarkov policyµ ∈ M̄ and initial state (x0, y0) ∈ X ×Y ,
the execution of the augmented process denoted by {(xk, yk), k =

0, 1, . . . ,N} is a stochastic process defined on the canonical sam-
ple spaceΩ := X̄N+1, endowed with its product σ -algebra B(Ω).
The probability measure Pµ(x0,y0) on Ω is uniquely defined by the
transition kernels Q̄k, the Markov policy µ ∈ M̄, and the initial
state (x0, y0) ∈ X̄ (Bertsekas & Shreve, 2007).

Consider the stochastic kernels Gk : B(Y ) × Y → [0, 1], the
parameter process {yk}, for k = 0, 1, . . . ,N distributed according
to these kernels, along with two functions γ : Y → B(X) and γ ′

:

Y → B(X), such that γ (y) ⊆ γ ′(y), ∀y ∈ Y . Define Kk := γ (yk)
and K ′

k := γ ′(yk) as stochastic target and safe sets respectively.
Our goal is to evaluate and subsequently maximize the proba-

bility that the execution of theMarkov control process {xk}k=0,1,...,N
will reach the target set Kk at some time in the horizon while
remaining in K ′

k, at all prior times. The probability that the system

initialized at x0 ∈ X , y0 ∈ Y , with control policy µ ∈ M̄ reaches Kk
while avoiding X \ K ′

k for all k = 0, 1, . . . ,N is

rµ(x0,y0)(γ , γ
′) := Pµ(x0,y0){∃j ∈ [0,N] : xj ∈ γ (yj)

∧ ∀i ∈ [0, j − 1] xi ∈ γ ′(yi) \ γ (yi)}. (1)

Our first observation is that the reachability probability may be
computed as an expectation of event. For this, let K̄ = {(x, y) ∈

X × Y | x ∈ γ (y)} and K̄ ′ = {(x, y) ∈ X × Y | x ∈ γ ′(y)}. The
reach–avoid probability (1) is

Eµx̄0


1K̄ (x̄0)+

N
j=1


j−1
i=0

1K̄ ′\K̄ (x̄i)


1K̄ (x̄j)


, (2)

where x̄k = (xk, yk) and we work under the convention that
j

i=k
(·) = 1 for k > j, for D ⊂ X , 1D : X → {0, 1} denotes its indicator
function and Eµx̄0 is the expectation with respect to the probability
measure Pµ(x0,y0).

Our control objective is as follows. Given an ADTSHS H̄ , with
stochastic set parameters y ∈ Y , and set-valued maps γ and γ ′,
γ ′(y) ⊆ γ (y) for all y ∈ Y representing target and safe sets re-
spectively:

(1) Compute the maximum reach–avoid probability r∗

(x0,y0)
(K̄ , K̄ ′)

:= supµ∈M̄ rµ(x0,y0)(K̄ , K̄
′), ∀x0 ∈ X .

(2) Find an optimal Markov policy µ∗
∈ M̄, if it exists, such that

r∗
x0(K̄ , K̄

′) = rµ
∗

x0 (K̄ , K̄
′), ∀x0 ∈ X .

Note that deterministic Markov policies are possibly a restriction.
We are working on extensions of the results to randomized poli-
cies.

From Eq. (2), observe that the reach–avoid problem with
stochastic sets is transformed into a reach–avoid problemwith de-
terministic sets in an extended state space. Hence, reach–avoid
methods developed for deterministic safe and target sets (Sum-
mers & Lygeros, 2010) can be applied. However, thesemethods are
computationally intractable for any hybrid and parameter spaces
with a large combined dimension due to the Curse of Dimension-
ality. Here, we focus on a special case of the above problem that
greatly reduces the computational burden.

3. A tractable case of the reach–avoid problem

Assume that the Markov parameters describing the stochastic
sets are given as, or can be fairly approximated by, independent
probability distributions. That is, let Gk(dyk|yk−1) = Gk(dyk). Due
to the independence of the probability distribution Gk from the
parameter yk, without loss of generality, we consider the Markov
policy also being independent from the parameter yk. Thus, we
consider the Markov policy as sequence of universally measurable
mapsµk : X → A, k = 0, 1, . . . ,N . LetM denote the set of all such
policies. Note that due to this assumption, the closed loop transi-
tion kernels Q̄k(·|x̄k, µk(x̄k)) become equivalent to the product of
two decoupled transition kernels Q (·|xk, µk(xk)) and Gk(yk). We
use Qµk(dx′

|xk) as a short-hand notation for Q (dx′
|xk, µk(xk)) for

k = 0, 1, . . . ,N − 1.
Since the initial parameter state y0 of the stochastic set is as-

sumed known, we define G0(dy0|y0−1) := δy0(dy0). For the set val-
ued maps γ and γ ′, with γ (y) ⊆ γ ′(y) for all y ∈ Y , we define the
following covering functions:

pKk(x) =


Y
1γ (yk)(x)Gk(dyk) = E


1γ (yk)(x)


,

pK ′
k
(x) =


Y
1γ ′(yk)(x)Gk(dyk) = E


1γ ′(yk)(x)


.
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