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a b s t r a c t 

We consider the problem of detecting a distributed target in compound-Gaussian sea clutter with Gamma 

distributed texture components. We design the Rao, Wald, and generalized likelihood ratio test (GLRT) de- 

tectors according to the two-step method: the first step is to obtain the Rao, Wald tests and GLRT on the 

assumption that the texture or/and covariance matrix structure are known; then the maximum a posteri- 

ori probability estimate of the clutter texture and the fixed point estimate of covariance matrix exploiting 

persymmetry are employed to replace the known texture and covariance matrix in the tests derived in 

the first step. Remarkably these proposed detectors ensure constant false alarm rate with respect to the 

covariance matrix structure. The effectiveness of the proposed detectors is verified by using simulated 

and real sea clutter data. 

© 2018 Published by Elsevier B.V. 

1. Introduction 

The problem of detecting distributed targets has received con- 

siderable attention in the literature [1–6] . Much work has been 

done for this problem in Gaussian clutter (see [7,8] , and references 

therein). Nevertheless, the Gaussian model is not suitable for clut- 

ter in many practical scenarios, e.g., in sea clutter or high reso- 

lution radars. As an alternative, a compound-Gaussian model for 

rational physical interpretation mechanism, is widely used to de- 

scribe the statistical properties of clutter [9–15] . In this model, 

clutter can be expressed as the product of two mutually inde- 

pendent components: texture and speckle. The texture component 

varies slowly, which describes the reflectivity of illuminated areas 

and is a non-negative real random process; the speckle component 

varies more rapidly, which accounts for the local backscattering 

and has a complex, zero-mean, possibly correlated Gaussian dis- 

tribution due to the central limit theorem [16] . 

Recently, many studies have been done for distributed target 

detection in compound-Gaussian clutter. In [17–20] , the general- 

ized likelihood ratio test (GLRT), Rao and Wald tests were designed 

for the distributed target detection in the compound-Gaussian clut- 

ter with deterministic but unknown texture components. In [21] , a 

subspace model was used for target returns, and a two-step adap- 

∗ Corresponding author. 

E-mail address: liuvjian@163.com (W. Liu). 

tive subspace detector was designed for detecting distributed tar- 

gets. The authors in [22] derived a GLRT for adaptively detecting 

range and Doppler-distributed targets in compound-Gaussian clut- 

ter whose texture is range dependent. The problem of detecting 

a distributed target in compound-Gaussian clutter in polarimetric 

multiple input multiple output radar was addressed in [23] , where 

a two-step GLRT was proposed. In [24] , the speckle component in 

the compound-Gaussian clutter was described by an autoregressive 

(AR) process, and an AR-based GLRT was developed for the dis- 

tributed target detection. 

It is known that compound-Gaussian distribution is referred to 

as K -distribution and t -distribution, when the texture component 

is subject to Gamma and inverse Gamma distributions, respec- 

tively. In the compound-Gaussian clutter with inverse Gamma tex- 

ture, three adaptive detectors (one-step, a-posteriori, and two-step 

GLRTs) were derived in [25] for detecting distributed targets. In 

[26] , the persymmetric Rao and Wald tests were developed for the 

problem of detecting a distributed target in compound-Gaussian 

clutter with unknown covariance matrix, where the texture com- 

ponent is assumed to follow an inverse-Gamma distribution. The 

choice of a Gamma distribution for texture is widely accepted and 

verified [27,28] . In compound-Gaussian clutter with Gamma dis- 

tributed texture, the detection problem of a point-like (instead of 

distributed) target was investigated in [29–33] . Bandiera et al. de- 

veloped a Bayesian GLRT detector without using secondary data 

for the distributed target detection problem in compound-Gaussian 

https://doi.org/10.1016/j.sigpro.2018.06.006 

0165-1684/© 2018 Published by Elsevier B.V. 

https://doi.org/10.1016/j.sigpro.2018.06.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2018.06.006&domain=pdf
mailto:liuvjian@163.com
https://doi.org/10.1016/j.sigpro.2018.06.006


J. Liu et al. / Signal Processing 152 (2018) 340–349 341 

noise with Gamma distributed texture [34] , where the covariance 

matrix structure has an inverse Wishart distribution. 

In this work, we consider the problem of detecting a distributed 

target in compound-Gaussian clutter with Gamma distributed tex- 

ture. Secondary data are assumed available for the estimation of 

covariance matrix structure. Our contributions are listed as follows: 

1) Three detectors are derived in two steps on basis of the prin- 

ciples of the GLRT, Rao and Wald tests. Note that the Rao or Wald 

test used here is different from the conventional one. The conven- 

tional Rao or Wald test requires to estimate all the unknown pa- 

rameters in one step, which is infeasible for the problem at hand. 

Alternatively, we design the Rao or Wald test in two steps. In the 

first step, the Rao or Wald test is designed by assuming that the 

texture and covariance matrix structure are known. Then the max- 

imum a posterior (MAP) estimate of texture and the fixed point 

estimate of the covariance matrix structure are obtained to replace 

the texture and covariance matrix structure, respectively, in the 

Rao or Wald test derived in the first step. 

2) Persymmetry is exploited in the covariance matrix to al- 

leviate the requirement on the training data size. The persym- 

metry exists in clutter covariance matrix when a detection sys- 

tem is equipped with a symmetrically-spaced linear array or 

symmetrically-spaced pulse trains. In such cases, the persymmet- 

ric covariance matrix has a property of double symmetry, i.e., Her- 

mitian about its principal diagonal and symmetric about its cross 

diagonal. 

3) We give a proof that the proposed detectors exhibit con- 

stant false alarm rate (CFAR) property against the covariance ma- 

trix structure. Numerical results based on simulated and real data 

reveal that the proposed detectors outperform their counterparts. 

The remainder of this paper is organized as follows. 

Section 2 presents problem formulation. In Section 3 , the Rao 

test, Wald test and GLRT are derived. In Section 4 , the CFAR prop- 

erty of the proposed detectors against the structure of covariance 

matrix is proved. The effectiveness of the proposed detectors is 

verified by using simulated and real data in Section 5 . Finally the 

paper is summarized in Section 6 . 

Notation: Vectors (matrices) are denoted by boldface lower (up- 

per) case letters. Superscripts ( ·) T , ( ·) ∗ and ( ·) † denote transpose, 

complex conjugate and complex conjugate transpose, respectively, 

The notation ∼ means “is distributed as,” and CN denotes a circu- 

larly symmetric, complex Gaussian distribution, �( ·) is the Gamma 

function, K v (·) denotes the modified Bessel function of the second 

kind with order v . Re[ ·] and Im[ ·] denote the real and imaginary 

parts of the argument, respectively. E ( ·) is the statistical expecta- 

tion. diag( ·) stands for a square diagonal matrix with the elements 

of a given vector on the diagonal, | ·| represents the modulus of a 

complex number. Tr( ·) denotes the trace of a matrix, j = 

√ −1 , and 

det (·) denotes the determinant of a matrix. 

2. Problem formulation 

Consider a radar system with N channels receiving the signal 

echoes reflected from a distributed target, which (if present) occu- 

pies H successive range bins. The received data in the h th range 

bin of the distributed target is denoted by an N × 1 column vec- 

tor z h , h = 1 , . . . , H. These data (called primary data) can be repre- 

sented by 

z h = αh v + n h , h = 1 , . . . , H, (1) 

where v is the known signal steering vector, αh is a deterministic 

but unknown complex scalar accounting for the target reflectivity 

and channel propagation effects, and n h denotes sea clutter in the 

h th primary data. Assume that the sea clutter n h has compound- 

Gaussian distribution, i.e., 

n h = 

√ 

τh g h , h = 1 , . . . , H, (2) 

where the variable τ h , is a positive random variable, usually re- 

ferred to as texture, representing the local clutter power; the col- 

umn vector g h is an N dimensional random vector, usually named 

speckle, representing the properties of the coherent radar channels. 

The speckle component g h is modeled as a circular complex 

Gaussian vector with zero mean and positive definite covariance 

matrix E[ g h g 
† 

h 
] = R . In shorthand notation, we write g h ∼ CN (0 , R ) . 

When the used system is equipped with a symmetrically spaced 

linear array or symmetrically spaced pulse trains [35] , the matrix 

R has a property of double symmetry, i.e., 

R = R 

† , and R = JR 

∗J , (3) 

where J is a permutation matrix with unit anti-diagonal elements 

and zeros elsewhere, namely, 

J = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 · · · 0 1 

0 0 · · · 1 0 

. . . 
. . . 

. . . 
. . . 

. . . 
0 1 · · · 0 0 

1 0 · · · 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (4) 

As for the distribution of the texture component, we consider 

the case that τ h is subject to Gamma distribution, which is widely 

accepted and verified by the statistical analysis on measured data 

[27] . The probability density function(PDF) of τ h is given by [36] 

f (τh ) = 

βq h 
h 

�(q h ) 
τh 

q h −1 exp ( −βh τh ) , τh ≥ 0 , q h ≥ 0 , βh ≥ 0 (5) 

where q h and βh are the shape and scale parameters, respectively. 

Now we need to make a decision upon a binary hypothesis. 

That is, under the null hypothesis H 0 the received data z h only 

contains the clutter n h . In contrast, under the alternative hypothe- 

sis H 1 , z h consists of the clutter n h and target signal. In summary, 

the detection problem at hand can be formulated as the following 

binary hypothesis testing: 

H 0 : 

{
z h = n h , h = 1 , . . . , H, 

z k = n k , k = H + 1 , . . . , H + K, 
(6a) 

and 

H 1 : 

{
z h = αh v + n h , h = 1 , . . . , H, 

z k = n k , k = H + 1 , . . . , H + K. 
(6b) 

Usually, the shape and scale parameters of the texture com- 

ponents in the clutter are unknown. In practice, we can use the 

method of moments to estimate these parameters [27,37] . Hence, 

we assume that the shape and scale parameters are known in the 

detection problem. The detection schemes designed with known 

shape and scale parameters can provide a benchmark of the best 

achievable performance. 

Note that the positive definite covariance matrix structure R is 

unknown in practice. To estimate it, a set of training (secondary) 

data z k , k = H + 1 , H + 2 , ..., H + K, only containing clutter is as- 

sumed available. They are usually collected in the vicinity of the 

primary data [38,39] . Suppose that the clutter in the training data 

has compound-Gaussian distribution, and shares the same covari- 

ance matrix structure R with the clutter in the primary data. 

It is worth noticing that the GLRT detector has been proposed 

for the detection problem in the point-like target case (i.e., H = 

1 ) [29] . However, no detector is designed in the distributed target 

case for the detection problem (6). In the following, we propose 

three adaptive detectors with H > 1 for (6). 
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