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a b s t r a c t 

The method of partial least squares (PLS) has become a preferred tool for ill-posed linear estimation prob- 

lems in the real domain, both in the regression and correlation analysis context. However, many modern 

applications involve complex-valued data (e.g. smart grid, sensor networks) and would benefit from cor- 

responding well-posed latent variable regression analyses. To this end, we propose a PLS algorithm for 

physically meaningful latent subspace regression with complex-valued data. For rigour, this is achieved 

by taking into account full complex second-order augmented statistics to produce a robust widely lin- 

ear estimator for general improper complex-valued data which may be highly correlated or colinear. The 

so-derived widely linear complex PL S (WL-CPL S) is shown to allow for effective joint latent variable de- 

composition of complex-valued data, while accounting for computational intractabilities in the calculation 

of a generalised inverse. This makes it possible to also determine the joint-subspace identified within the 

proposed algorithm, when applied to univariate outputs. The analysis is supported through both simula- 

tions on synthetic data and a real-world application of frequency estimation in unbalanced power grids. 

Finally, the ability of WL-CPLS to identify physically meaningful components is demonstrated through 

simultaneous complex covariance matrix diagonalisation. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Developments in sensor technology and the increasing avail- 

ability of computational power and computer memory have made 

it possible to obtain and process very large and often high- 

dimensional datasets. Such real-world datasets, typically have a 

rich structure which creates an opportunity for physically mean- 

ingful analysis, at the expense of computational tractability. For 

example, data from high-density sensor networks are frequently 

highly-correlated (colinear), which renders traditional regression 

methods ill-posed. It is therefore of particular interest to develop 

signal processing techniques that both account for these numeri- 

cal issues and at the same time take advantage of any structure 

present in the data. 

For many applications a widely accepted method to exploit 

structure in bivariate data is through complex-valued signal pro- 

cessing. The complex representation transforms complicated ex- 

pressions in R 

2 , such as rotations, into compact and easy to inter- 

pret forms in C . This has led to advances in analysis of wind pro- 

files [1] , power systems [2,3] , acoustics [4] , and communications 

[5,6] . More recently, advances in so-called “augmented” statistics 
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[7] have shown that a full second-order description of a complex- 

valued random variable, z , includes both the pseudocovariance ma- 

trix, P = E[ zz T ] , and the standard covariance matrix, C = E[ zz H ] . 

Therefore, only the consideration of such “augmented” complex 

statistics can yield signal analysis tools which make use of fea- 

tures intrinsic to the complex domain, such as complex second- 

order noncircularity [8–10] . 

When it comes to determining the relationship between two 

sets of variables, linear regression is probably the most common 

data analysis method, whereby the variable y ∈ R is estimated 

through a linear combination, ˆ y = a T x , of the independent vari- 

ables, x ∈ R 

m ×1 , by the vector of coefficients, a ∈ R 

m ×1 . The vec- 

tor a is calculated so as to minimise the mean square error (MSE) 

between the observation, y , and its prediction, ˆ y . An extension to 

the complex domain has been developed by Picinbono and Cheva- 

lier [11] , whereby the optimal estimate, ˆ y , for complex-valued 

data, y ∈ C , is given by ˆ y = h 

H x + g H x ∗, where the coefficient vec- 

tors, h ∈ C 

m ×1 and g ∈ C 

m ×1 , describe the relation with the inde- 

pendent variables x ∈ C 

m ×1 and their conjugate x ∗. This so-called 

widely linear estimator is linear in both x and x ∗, and has found 

use in numerous applications including adaptive estimation of sys- 

tem frequency in distributed power systems [12] . 

A direct application of linear regression to dense sensor arrays 

has a very limited scope, as such solutions become ill-posed when 
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the data are highly-correlated or colinear [13] . This can cause the 

covariance matrix, the inverse of which is inherent to regression 

methods, to have a large condition number or to become sub-rank 

which makes it difficult to compute its inverse. As a remedy, reg- 

ularisation methods, such as Ridge-Regression [14] , add a constant 

to the matrix diagonal to enforce well-posedness, however, this in- 

cludes spurious information in the calculation. An alternative ap- 

proach is to use the class of component analysis methods to fac- 

torise the original variables, which in addition to extracting the rel- 

evant information also provides a representation that is straightfor- 

wardly invertible. One such technique is principal component re- 

gression (PCR), which uses principal component analysis (PCA) to 

describe the original data matrix of regressors, X , through orthog- 

onal latent components [15] . This allows for the separation of the 

desired information from noise related latent variables and admits 

a straightforward calculation of the generalised inverse of X , thus 

stabilising linear regression [16] . 

It is important to note that the so-obtained PCR solution cre- 

ates a latent variable decomposition based only on the information 

in the independent variables, X , which means that it may contain 

erroneous information for use in the prediction of the dependent 

variables, Y . To this end, the partial least squares (PLS) regression 

algorithm integrates component analysis into the regression cal- 

culation. This is achieved by finding latent variables that explain 

only the joint input-output relation between the variables, X and 

Y , thus rendering the problem well-posed [13] . Real-world appli- 

cations of the PLS are found in chemometrics and are emerging in 

signal processing [17–19] . 

The original real-valued PLS has been established as a robust 

data-analysis methodology [20] . The several types of PLS can be 

broadly split into two groups: i) those used for regression cal- 

culations (PLS1/2 in [20] ) and ii) those used for dataset cross- 

covariance analysis (PLS Mode-A, PLS-SB in [20] ). The PLS algo- 

rithms that aim to calculate a regression (NIPALS 1 and SIMPLS 

[21] ) produce an orthogonal decomposition of the independent 

variable data block X . This leads to the most parsimonious model 

of the data for a regression calculation, because dimensionality re- 

duction is at the heart of this approach. On the other hand, for 

dataset cross-covariance analysis it is often desirable that the la- 

tent variable decomposition is symmetric between the X and Y 

blocks, in which case the scores are not generally orthogonal. In 

the latter format, there are strong similarities to canonical correla- 

tion analysis (CCA), however, these type of methods are not usu- 

ally used for prediction. The PLS framework therefore offers an in- 

depth data analysis tool through a combination of a linear regres- 

sion and its latent variable decomposition. 

It is crucial that the derived latent variables provide a useful 

and physically meaningful interpretation of the data, which can be 

further enhanced through constraints on the components such as 

non-negativity or sparseness [22] . Component analysis tools based 

on augmented complex statistics have recently been developed for 

complex-valued data and include the Strong Uncorrelating Trans- 

form (SUT) [23,24] and the Approximate Uncorrelating Transform 

(AUT) [25] , while an extension of the PLS to complex-valued data 

has been proposed [26] . However, this version of PLS is struc- 

turally equivalent to the real-valued PLS-SB method in [20] and 

is presented from the viewpoint of dataset cross-covariance anal- 

ysis. Such a decomposition therefore inherits the properties of the 

data-covariance analysis class of methods: the latent variables are 

not in general orthogonal and the relation between the X and Y 

block is symmetric. On the contrary, the proposed WL-CPLS algo- 

rithm is designed as a generic extension of the NIPALS algorithm 

1 Throughout the paper we refer to the NIPALS algorithm for the PLS-regression 

method known as PLS1/2 in [20] 

for PLS-regression [13,27] to complex-valued data, taking into ac- 

count full second-order augmented statistics. This generates the 

desirable property of the orthogonality of the obtained latent vari- 

ables, unlike that proposed in [26] , and naturally incorporates the 

calculation of a widely-linear regression. This important feature is 

shown to be useful beyond the field of regression for complex data 

and, in Section 4.2 , its use is demonstrated to yield an uncorre- 

lating transform. The analysis shows that the WL-CPLS algorithm 

caters for non-circular data without any restriction and in a generic 

way, unlike existing algorithms. 

Our main technical contributions are threefold. We provide a 

method to calculate the widely linear regression coefficients akin 

to the real-domain PLS algorithm. Next, the properties of the WL- 

CPLS model residuals are determined and the algorithm conver- 

gence is proved for a univariate output. Finally, the WL-CPLS is ver- 

ified on practical applications of complex-valued covariance matrix 

diagonalisation and for smart grid frequency estimation. 

The paper is structured as follows. The background on PLS and 

widely linear regression is given in Section 2 . We then derive the 

WL-CPLS algorithm in Section 3 based on a critical review of the 

PL S algorithm. The WL-CPL S algorithm is analysed in Section 4 and 

its application for simultaneous complex covariance matrix diago- 

nalisation is introduced. The utility of WL-CPLS for complex-valued 

regression is illustrated through simulations on synthetic data in 

Section 5 . The WL-CPLS is then applied to the real-world appli- 

cation of estimating the frequency of an unbalanced multi-nodal 

power grid in Section 6 , confirming its capabilities over existing 

techniques. 

Boldfaced capital letters denote matrices, A , lower case bold- 

faced letters vectors, a , and lightfaced italic letters scalars, a . The 

superscripts (·) + , (·) T , (·) H and ( · ) ∗ denote respectively the gener- 

alised inverse, transpose, Hermitian transpose and conjugate oper- 

ators respectively. The operator Eig max { · } returns the eigenvector 

corresponding to the largest eigenvalue of the matrix in the argu- 

ment. 

2. Background and review 

2.1. Partial least squares regression 

Consider the linear regression problem of predicting a matrix of 

p dependent variables, Y ∈ R 

N×p , from a matrix of m independent 

variables, X ∈ R 

N×m , through a matrix of coefficients, B ∈ R 

m ×p , de- 

scribed by 

ˆ Y = XB , (1) 

where ˆ Y denotes the estimate of Y and N denotes the number of 

observations. The general solution for the regression coefficients, B , 

has the form 

B = X 

+ Y , (2) 

which requires the calculation of the generalised matrix inverse X 

+ 

[28] . The ordinary least squares solution is then given by 

X 

+ = (X 

T X ) −1 X 

T . (3) 

If the variables in X (its columns) are highly-correlated or colinear, 

then X is sub-rank, which is prohibitive to the calculation of the 

inverse of the matrix X 

T X . To counteract this issue, the method of 

Partial Least Squares (PLS) produces a latent variable decomposi- 

tion of the matrix X from which a generalised inverse is straight- 

forwardly calculated [13,17,29] . The advantage of PLS compared to 

other component analysis regression methods ( e.g. PCR) is that the 

latent components are selected so as to explain the joint dynamics 

(shared latent variables) between X and Y , while the PCR solution 

produces a decomposition of X without consideration of Y , thus 
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