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ABSTRACT

The method of partial least squares (PLS) has become a preferred tool for ill-posed linear estimation prob-
lems in the real domain, both in the regression and correlation analysis context. However, many modern
applications involve complex-valued data (e.g. smart grid, sensor networks) and would benefit from cor-
responding well-posed latent variable regression analyses. To this end, we propose a PLS algorithm for
physically meaningful latent subspace regression with complex-valued data. For rigour, this is achieved
by taking into account full complex second-order augmented statistics to produce a robust widely lin-
ear estimator for general improper complex-valued data which may be highly correlated or colinear. The
so-derived widely linear complex PLS (WL-CPLS) is shown to allow for effective joint latent variable de-
composition of complex-valued data, while accounting for computational intractabilities in the calculation
of a generalised inverse. This makes it possible to also determine the joint-subspace identified within the
proposed algorithm, when applied to univariate outputs. The analysis is supported through both simula-
tions on synthetic data and a real-world application of frequency estimation in unbalanced power grids.
Finally, the ability of WL-CPLS to identify physically meaningful components is demonstrated through
simultaneous complex covariance matrix diagonalisation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Developments in sensor technology and the increasing avail-
ability of computational power and computer memory have made
it possible to obtain and process very large and often high-
dimensional datasets. Such real-world datasets, typically have a
rich structure which creates an opportunity for physically mean-
ingful analysis, at the expense of computational tractability. For
example, data from high-density sensor networks are frequently
highly-correlated (colinear), which renders traditional regression
methods ill-posed. It is therefore of particular interest to develop
signal processing techniques that both account for these numeri-
cal issues and at the same time take advantage of any structure
present in the data.

For many applications a widely accepted method to exploit
structure in bivariate data is through complex-valued signal pro-
cessing. The complex representation transforms complicated ex-
pressions in R2, such as rotations, into compact and easy to inter-
pret forms in C. This has led to advances in analysis of wind pro-
files [1], power systems [2,3], acoustics [4], and communications
[5,6]. More recently, advances in so-called “augmented” statistics
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[7] have shown that a full second-order description of a complex-
valued random variable, z, includes both the pseudocovariance ma-
trix, P = E[zz"], and the standard covariance matrix, C = E[zz"].
Therefore, only the consideration of such “augmented” complex
statistics can yield signal analysis tools which make use of fea-
tures intrinsic to the complex domain, such as complex second-
order noncircularity [8-10].

When it comes to determining the relationship between two
sets of variables, linear regression is probably the most common
data analysis method, whereby the variable y e R is estimated
through a linear combination, j = a'x, of the independent vari-
ables, x e R™<1, by the vector of coefficients, a € R™*!, The vec-
tor a is calculated so as to minimise the mean square error (MSE)
between the observation, y, and its prediction, y. An extension to
the complex domain has been developed by Picinbono and Cheva-
lier [11], whereby the optimal estimate, y, for complex-valued
data, y € C, is given by j = hHx + g"x*, where the coefficient vec-
tors, h e C™1 and g e C™*!, describe the relation with the inde-
pendent variables x e C™*1 and their conjugate x*. This so-called
widely linear estimator is linear in both x and x*, and has found
use in numerous applications including adaptive estimation of sys-
tem frequency in distributed power systems [12].

A direct application of linear regression to dense sensor arrays
has a very limited scope, as such solutions become ill-posed when
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the data are highly-correlated or colinear [13]. This can cause the
covariance matrix, the inverse of which is inherent to regression
methods, to have a large condition number or to become sub-rank
which makes it difficult to compute its inverse. As a remedy, reg-
ularisation methods, such as Ridge-Regression [14], add a constant
to the matrix diagonal to enforce well-posedness, however, this in-
cludes spurious information in the calculation. An alternative ap-
proach is to use the class of component analysis methods to fac-
torise the original variables, which in addition to extracting the rel-
evant information also provides a representation that is straightfor-
wardly invertible. One such technique is principal component re-
gression (PCR), which uses principal component analysis (PCA) to
describe the original data matrix of regressors, X, through orthog-
onal latent components [15]. This allows for the separation of the
desired information from noise related latent variables and admits
a straightforward calculation of the generalised inverse of X, thus
stabilising linear regression [16].

It is important to note that the so-obtained PCR solution cre-
ates a latent variable decomposition based only on the information
in the independent variables, X, which means that it may contain
erroneous information for use in the prediction of the dependent
variables, Y. To this end, the partial least squares (PLS) regression
algorithm integrates component analysis into the regression cal-
culation. This is achieved by finding latent variables that explain
only the joint input-output relation between the variables, X and
Y, thus rendering the problem well-posed [13]. Real-world appli-
cations of the PLS are found in chemometrics and are emerging in
signal processing [17-19].

The original real-valued PLS has been established as a robust
data-analysis methodology [20]. The several types of PLS can be
broadly split into two groups: i) those used for regression cal-
culations (PLS1/2 in [20]) and ii) those used for dataset cross-
covariance analysis (PLS Mode-A, PLS-SB in [20]). The PLS algo-
rithms that aim to calculate a regression (NIPALS' and SIMPLS
[21]) produce an orthogonal decomposition of the independent
variable data block X. This leads to the most parsimonious model
of the data for a regression calculation, because dimensionality re-
duction is at the heart of this approach. On the other hand, for
dataset cross-covariance analysis it is often desirable that the la-
tent variable decomposition is symmetric between the X and Y
blocks, in which case the scores are not generally orthogonal. In
the latter format, there are strong similarities to canonical correla-
tion analysis (CCA), however, these type of methods are not usu-
ally used for prediction. The PLS framework therefore offers an in-
depth data analysis tool through a combination of a linear regres-
sion and its latent variable decomposition.

It is crucial that the derived latent variables provide a useful
and physically meaningful interpretation of the data, which can be
further enhanced through constraints on the components such as
non-negativity or sparseness [22]. Component analysis tools based
on augmented complex statistics have recently been developed for
complex-valued data and include the Strong Uncorrelating Trans-
form (SUT) [23,24] and the Approximate Uncorrelating Transform
(AUT) [25], while an extension of the PLS to complex-valued data
has been proposed [26]. However, this version of PLS is struc-
turally equivalent to the real-valued PLS-SB method in [20] and
is presented from the viewpoint of dataset cross-covariance anal-
ysis. Such a decomposition therefore inherits the properties of the
data-covariance analysis class of methods: the latent variables are
not in general orthogonal and the relation between the X and Y
block is symmetric. On the contrary, the proposed WL-CPLS algo-
rithm is designed as a generic extension of the NIPALS algorithm

1 Throughout the paper we refer to the NIPALS algorithm for the PLS-regression
method known as PLS1/2 in [20]

for PLS-regression [13,27] to complex-valued data, taking into ac-
count full second-order augmented statistics. This generates the
desirable property of the orthogonality of the obtained latent vari-
ables, unlike that proposed in [26], and naturally incorporates the
calculation of a widely-linear regression. This important feature is
shown to be useful beyond the field of regression for complex data
and, in Section 4.2, its use is demonstrated to yield an uncorre-
lating transform. The analysis shows that the WL-CPLS algorithm
caters for non-circular data without any restriction and in a generic
way, unlike existing algorithms.

Our main technical contributions are threefold. We provide a
method to calculate the widely linear regression coefficients akin
to the real-domain PLS algorithm. Next, the properties of the WL-
CPLS model residuals are determined and the algorithm conver-
gence is proved for a univariate output. Finally, the WL-CPLS is ver-
ified on practical applications of complex-valued covariance matrix
diagonalisation and for smart grid frequency estimation.

The paper is structured as follows. The background on PLS and
widely linear regression is given in Section 2. We then derive the
WL-CPLS algorithm in Section 3 based on a critical review of the
PLS algorithm. The WL-CPLS algorithm is analysed in Section 4 and
its application for simultaneous complex covariance matrix diago-
nalisation is introduced. The utility of WL-CPLS for complex-valued
regression is illustrated through simulations on synthetic data in
Section 5. The WL-CPLS is then applied to the real-world appli-
cation of estimating the frequency of an unbalanced multi-nodal
power grid in Section 6, confirming its capabilities over existing
techniques.

Boldfaced capital letters denote matrices, A, lower case bold-
faced letters vectors, a, and lightfaced italic letters scalars, a. The
superscripts (1)*, ()T, ()" and (- )* denote respectively the gener-
alised inverse, transpose, Hermitian transpose and conjugate oper-
ators respectively. The operator Eigmax{-} returns the eigenvector
corresponding to the largest eigenvalue of the matrix in the argu-
ment.

2. Background and review
2.1. Partial least squares regression

Consider the linear regression problem of predicting a matrix of
p dependent variables, Y € RN*P, from a matrix of m independent
variables, X e RN*™M through a matrix of coefficients, B € R™*P, de-
scribed by

Y = XB, (1)

where Y denotes the estimate of Y and N denotes the number of
observations. The general solution for the regression coefficients, B,
has the form

B =X'Y, 2)

which requires the calculation of the generalised matrix inverse X*
[28]. The ordinary least squares solution is then given by

Xt = X"X)"'X". (3)

If the variables in X (its columns) are highly-correlated or colinear,
then X is sub-rank, which is prohibitive to the calculation of the
inverse of the matrix X"X. To counteract this issue, the method of
Partial Least Squares (PLS) produces a latent variable decomposi-
tion of the matrix X from which a generalised inverse is straight-
forwardly calculated [13,17,29]. The advantage of PLS compared to
other component analysis regression methods (e.g. PCR) is that the
latent components are selected so as to explain the joint dynamics
(shared latent variables) between X and Y, while the PCR solution
produces a decomposition of X without consideration of Y, thus
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