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a b s t r a c t 

Zero-attracting least-mean-square (ZA-LMS) algorithm has been widely used for online sparse system 

identification. Similarly to most adaptive filtering algorithms and sparsity-inducing regularization tech- 

niques, ZA-LMS appears to face a trade-off between convergence speed and steady-state performance, 

and between sparsity level and estimation bias. It is therefore important, but not trivial, to optimally set 

the algorithm parameters. To address this issue, a variable-parameter ZA-LMS algorithm is proposed in 

this paper, based on a model of the stochastic transient behavior of the ZA-LMS. By minimizing the excess 

mean-square error (EMSE) at each iteration on the basis of a white input assumption, we obtain closed- 

form expression of the step-size and regularization parameter. To improve the performance, we introduce 

the same strategy for the reweighted ZA-LMS (RZA-LMS). Simulation results illustrate the effectiveness of 

the proposed algorithms and highlight their performance through comparisons with state-of-the-art al- 

gorithms, in the case of white and correlated inputs. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Adaptive filtering methods are powerful tools for online sys- 

tem identification [1,2] . Within the myriad of algorithms proposed 

in the literature, the least-mean-square (LMS) algorithm has been 

widely used since it is robust and provides reasonably good per- 

formance with low computational complexity. Several applications 

have recently shown the need for online sparse identification tech- 

niques. A driving force behind the development of such algorithms 

is, for instance, the channel estimation problem because, although 

the number of coefficients of the impulse response can be large, 

only a few of them may have significant values. It is therefore im- 

portant to endow the conventional LMS algorithm with the ability 

to provide enhanced performance for such scenarios. 

In recent years, several algorithms based on the LMS were pro- 

posed to promote the sparsity of the estimate. The proportion- 

ate normalized LMS (PNLMS) [3] and its variant called improved 

PNLMS (IPNLMS) [4] update each filter coefficient independently 

by adjusting the adaptation step-size in proportion to the esti- 
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mated filter coefficient. Another family of sparsity-inducing algo- 

rithms is motivated by the compressive sensing theory, which pro- 

vides a unified framework for estimating sparse signals [5,6] . In 

place of the � 0 -norm, which provides an exact count of the non- 

zero coefficients but leads to NP-hard optimization problems (non- 

deterministic polynomial-time solvable decision problems), other 

sparsity-inducing norms can be used as a surrogate to overcome 

this difficulty [7] . The use of the � 1 -norm is a popular choice [8] . 

For instance, the authors in [9] consider an � 1 -norm regularizer, 

and introduce the zero-attracting LMS and the reweighted zero- 

attracting LMS for sparse system identification. It is shown that 

the ZA-LMS and the RZA-LMS perform better than the LMS in 

sparse scenarios. However adjusting the algorithm parameters, in- 

cluding the step size and the regularization parameter, remains a 

tricky task. On the one hand, as for usual adaptive algorithms, the 

step-size plays a crucial role to control the trade-off between the 

convergence speed and the asymptotic performance. A small step- 

size leads to slower convergence but improved asymptotic perfor- 

mance, while a large step-size leads to faster convergence but at 

the cost of a higher power of the residual error, or even instabil- 

ity of the algorithm [1,2] . On the other hand, the regularization pa- 

rameter controls the trade-off between the sparsity of the estimate 

and the estimation bias. A large regularization parameter associ- 

ated with the � 1 -norm strongly promotes the sparsity of the solu- 

tion. This however causes a larger bias of the non-zero parameter 

vector entries. Reweighted � 1 -regularization allows to reduce this 

bias. However, an improper value of the regularization parameter 
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may even worsen the estimation performance. Though techniques 

such as regularization path and cross validation help characterize 

the influence of this parameter [10] , they are inappropriate for on- 

line learning settings. 

Variable parameter strategies provide simple but efficient so- 

lutions for optimizing the trade-off between fast convergence and 

low misadjustment [11] . For LMS, several variable step-size strate- 

gies have been proposed in the literature to address this issue. In 

most cases, the step-size adapts over time depending on the es- 

timation error. Related works include [11–13] . A variable step-size 

version of the PNLMS, called NPVSS-IPNLMS, is proposed in [11] . It 

combines the IPNLMS and a variable step-size NLMS (VSS-NLMS) 

strategy [14] . However, while achieving a lower misadjustment, the 

convergence speed of NPVSS-IPNLMS slows down significantly af- 

ter an initial phase. The zero-attracting variable step-size LMS (ZA- 

VSSLMS) and the reweighted zero-attracting variable step-size LMS 

(RZA-VSSLMS) introduced in [12] use the variable step-size strategy 

reported in [15] . A significant improvement in the convergence rate 

as well as in the misadjustment error can be observed. Another 

variable step-size RZA-LMS strategy based on a nonlinear relation- 

ship between the step-size and the power of the noise-free prior 

error, called VSS-RZA-LMS, is considered in [13] . Nevertheless, the 

misadjustment improvement appears to be limited. It is worth not- 

ing that some extra parameters are introduced into all these algo- 

rithms, but setting their proper values is a nontrivial task, similar 

to the selection of an appropriate step size. 

Motivated by our recent work [16] , where a new model is de- 

rived for the transient behavior of the ZA-LMS algorithm, we pro- 

pose in this paper to design a variable-parameter ZA-LMS (VP- 

ZA-LMS) algorithm where the step-size and the regularization pa- 

rameter are both adjusted in an online manner. Unlike heuristic 

strategies considered in the literature, our method is based on an 

optimization step that minimizes the EMSE at each iteration. In- 

deed, it turns out to be a quadratic function of the step-size and 

the regularization parameter when considering the transient model 

in [16] under a white input assumption. This yields closed-form 

expressions of the step-size and regularization parameter at each 

iteration, leading to a faster convergence as well as a lower mis- 

adjustment. To further improve the performance, we apply this 

strategy to the RZA-LMS, leading to a variable-parameter RZA-LMS 

(VP-RZA-LMS) algorithm. Simulation results illustrate the enhanced 

performance of our algorithms compared with ZA-LMS, RZA-LMS 

and other variable step-size algorithms used in sparse system iden- 

tification applications. We summarize the contributions of this 

work as follows: 

1. Compared to the existing literatures, this work is the first one 

that derives a variable-parameter strategy based on a theo- 

retical model of the filter performance. The proposed algo- 

rithm jointly adjust the step-size and regularization parameter 

in some optimal sense. 

2. Unlike existing works on ZA-LMS that focus on the real-valued 

data case, we derive an extension to complex-valued systems. 

3. While working well for ZA-LMS/RZA-LMS, the proposed frame- 

work can be extended to several other adaptive filters having 

similar structure, such as the LMS with � 0 -norm penalty, the 

group ZA-LMS, etc. 

Before proceeding, note that this work and [16] are both related 

to the transient behavior of the ZA-LMS algorithm but they address 

different issues. The analysis in [16] focuses on how deriving an 

accurate model for the transient behavior of ZA-LMS. The current 

work uses an approximate model that allows us to automatically 

adjust the algorithm parameters in an online way. 

The rest of this paper is organized as follows. Section 2 re- 

views the ZA-LMS and RZA-LMS algorithms. The VP-ZA-LMS and 

VP-RZA-LMS algorithms are derived in Sections 3 and 4 , respec- 

tively. In Section 5 , computer simulations are performed to validate 

the proposed algorithms and to show their superior performance. 

Section 6 concludes the paper. 

Notation. Normal font x denotes scalars. Boldface small letters 

x denote column vectors. All vectors are column vectors. Boldface 

capital letters X denote matrices. The superscript ( · ) � denotes the 

transpose of a matrix or a vector. The inverse of a square matrix is 

denoted by (·) −1 
. All-zero vector and all-one vector of length N are 

denoted by 0 N and 1 N , respectively. The Gaussian distribution with 

mean μ and variance σ 2 is denoted by N (μ, σ 2 ) . The operator 

sgn{ · } takes the sign of the entries of its argument. The operator 

tr{ · } takes the trace of its matrix argument. The operator | · | takes 

the absolute value of the entries of its argument. The mathemat- 

ical expectation is denoted by E {·} . The operators max { · , · } and 

min { · , · } take the maximum and minimum value of their argu- 

ments, respectively. 

2. System model and zero-attracting LMS 

2.1. System model and zero-attracting LMS 

To be consistent with ZA-LMS/RZA-LMS framework, and for the 

sake of simplicity, we start by deriving our parameter adjustment 

strategies in the case of real-valued signals. In Appendix C, we ex- 

tend ZA-LMS and RZA-LMS to complex-valued data, and then de- 

rive the associated parameter adjustment strategies in a concise 

manner. Consider an unknown system with input-output relation 

characterized by the linear model 

y n = x � n w 

� + z n (1) 

with w 

� ∈ R 

L denoting an unknown parameter vector, and x n ∈ R 

L 

a regression vector with a positive definite covariance matrix R x = 

E { x n x � n } > 0 at instant n . The regression vector x n and the out- 

put signal y n are assumed to be zero mean. The error signal z n is 

assumed to be stationary, independent and identically distributed 

(i.i.d.), with zero mean and variance σ 2 
z , and independent of any 

other signal. Let J ( w ) denote the mean-square-error (MSE) cost, 

namely, 

J( w ) = 

1 

2 

E 

{
[ y n − w 

� x n ] 2 
}
. (2) 

It is clear from (1) that J ( w ) is minimized at w 

� . 

The problem considered in this paper is to estimate the 

unknown parameter vector w 

� , which is assumed to be 

sparse [3,17,18] . This problem can be addressed by minimizing the 

following regularized MSE cost: 

w 

o 
ZA = arg min 

w 

J ZA ( w ) 

with J ZA ( w ) = 

1 

2 

E 

{
[ y n − w 

� x n ] 2 
}

+ λ‖ w ‖ 1 , 

(3) 

where the � 1 -norm term, defined as ‖ w ‖ 1 = 

∑ L 
i =1 | w i | , is used to 

promote the sparsity of the estimate, and λ≥ 0 is the regulariza- 

tion parameter. A subgradient of J ZA ( w ) in problem (3) is given by: 

∂ J ZA ( w ) = R x w − p xy + λ sgn { w } (4) 

where p xy = E { x n y n } is the correlation vector between x n and y n . 

Using the instantaneous approximations R x ≈ x n x 
� 
n and p xy ≈ x n y n , 

the subgradient iteration leads to the ZA-LMS algorithm as derived 

in [9] : 

w n +1 = w n + μ e n x n − ρ sgn { w n } , (5) 

where e n is the estimation error given by: 

e n = y n − w 

� 
n x n , (6) 

μ is a positive step-size, and ρ = μλ. 
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