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a b s t r a c t 

Direct position determination (DPD) is a promising technique that offers superior performance compared 

with conventional two-step localization methods. Existing DPD methods presume that the observer loca- 

tions are known exactly, whereas in practical environments, a small error in the observer locations will 

lead to an erroneous localization. This study considers the localization of a stationary transmitter by sepa- 

rated moving arrays from passive measurements taken at different points along the trajectory. The precise 

locations and velocities of the observers are not available, but their errors are assumed to be Gaussian 

distributed. Using this probability distribution, we propose maximum likelihood-based DPD approaches 

in the presence of observer location errors for both unknown and known signals. The proposed DPDs rely 

on alternating iteration schemes, which reduce the multidimensional nonlinear optimization problem to 

optimizations of dimensions that are much smaller than the number of unknowns. As opposed to the 

conventional two-step methods that extract measurement parameters and then estimate the positions 

from them, the proposed DPDs achieve the localization in a single step by exploiting the information of 

angles, time delays, and Doppler frequency shifts, but without computing them. Additionally, we derive 

the Cramér–Rao bound (CRB) formula for this DPD problem in the presence of observer location errors. 

The simulation results prove that the performance of our methods attains the associated CRB. Moreover, 

they are more robust than the conventional two-step approaches with respect to observer location errors. 

We demonstrate our methods for the scenario of multiple moving arrays, but these methods can easily 

be extended to DPD problems accounting for observer location errors in different scenarios. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The passive localization of stationary transmitters is a clas- 

sic problem in various fields such as signal processing, wireless 

communication, radar, sonar, and radio astronomy. Traditional lo- 

calization methods employ two-step processing [1–3] , where the 

measurement parameters (e.g., direction of arrival (DOA), time of 

arrival, and Doppler frequency shift) are first extracted and then 

the source positions are estimated. Because they estimate pa- 

rameters at each observer separately and independently without 

the constraint that the measurements correspond to the same 

transmitter location, the performance of two-step localization 

techniques are suboptimal and they cannot guarantee high local- 

ization accuracy. Recently, there has been an upsurge in interest in 

the direct position determination (DPD) technique [4–7] because of 

its performance, which is superior to that of the two-step meth- 
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ods. Compared with the two-step methods, DPD directly localizes 

the transmitter from sensor outputs under the constraint that the 

measurements correspond to the same transmitter location, which 

enables the estimation of locations in a single step without esti- 

mating intermediate parameters. 

A number of maximum likelihood (ML)-based DPD algorithms 

can be found in the literature. For the scenario of widely separated 

arrays, Weiss proposed ML-based DPD algorithms in [8] for a sin- 

gle source with either a known or unknown signal. An ML-based 

DPD for multiple sources with known waveforms was advocated in 

[9] . ML-based algorithms can approach the corresponding Cramér–

Rao bounds (CRBs). However, when solving ML estimators in the 

presence of multiple sources with unknown waveforms, numerous 

parameters require considerable computational effort. As one solu- 

tion, an iterative DPD method for multiple unknown sources was 

developed in [10] , where a lower dimensional grid search is re- 

quired during each iteration. The preceding DPD algorithms, which 

use widely separated arrays, involve a centralized processing of the 

frequency-domain observations of all the arrays, and implicitly use 

the location information embedded in angles and time delays. If 
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there is relative motion between the observer and transmitter, the 

Doppler shift of the transmitter frequency can also be exploited 

for localization [11] . In a localization system consisting of multi- 

ple moving sensors, [12] proposed a direct geolocation algorithm 

for a narrowband radio transmitter based on the location infor- 

mation in the Doppler shift. For the scenario where the source 

emits a relatively wideband signal (i.e., the bandwidth is consid- 

erable compared to the inverse of the propagation time delays) 

and is observed by moving receivers, two kinds of ML-based DPD 

approaches for a stationary target were developed based on the 

time delay and Doppler frequency shift [13–15] . One method mod- 

els the transmitted signal as a random Gaussian signal, whereas 

the other assumes the signal to be deterministic and considers the 

cases of known and unknown signal waveforms. To achieve higher 

accuracy, an ML DPD was developed in [16] using coherent sum- 

mation that takes into account the coherency among the short- 

time signals received at the same receiver. Note that the studies 

in [12–16] are unable to exploit angle information, because they 

are designed for moving observers, each of which is equipped with 

a single sensor. The localization accuracy of these ML-based DPDs 

has shown to be significantly better than those of the conventional 

two-step methods, especially under low signal-to-noise ratio (SNR) 

conditions. 

In spite of the above advances of the DPD technique, to the 

best of our knowledge, most existing DPDs presume that the ac- 

curate locations or velocities of the observers are known in ad- 

vance, and few effort s have been devoted to solving the DPD prob- 

lem accounting for observer location uncertainties. In practice, the 

receiver locations may not be known exactly [17] . For instance, in 

underwater acoustic localization applications, sensor nodes are de- 

ployed randomly and their exact positions are often not available. 

In airborne localization systems, the positions and velocities of air- 

planes or unmanned aerial vehicles (UAVs) may not be precisely 

known. A slight error in observer location will lead to a big error in 

the location result, and therefore the source location accuracy can 

be very sensitive to the accuracy of the observer positions and ve- 

locities in practical environments. It has been known that observer 

location uncertainty can have a dramatic effect on the performance 

of the two-step localization [17–19] . As a result, it is important to 

take the inaccuracy in observer locations into account for the DPD 

problem. 

This study investigates the DPD algorithm for a stationary trans- 

mitter observed by several arrays mounted on fast-moving plat- 

forms. The observers intercept the transmitted signal during their 

movements and collect batches of data at different points along 

the trajectory. Typical examples include a communication or radar 

transmitter, where the observer platforms are airborne, e.g. on air- 

craft, helicopters, or UAVs [20–21] . Because the moving observers 

frequently have errors in their positions and velocities, we deal 

with a practical environment in our study, where the positions and 

velocities of the observers are not known exactly but their errors 

are assumed to obey Gaussian distributions with known covariance 

matrices. Given that the signal waveform may be known in some 

cases where the transmitter emits a synchronization sequence 

or a known message [22] , the DPD problems for both unknown 

and known signals are considered. We show that the DPD meth- 

ods proposed here can improve the location accuracy compared 

with the two-step approaches in the presence of observer location 

errors. 

The main contributions are summarized as follows: 

• We establish a signal model in which the angles, time delays 

and Doppler shifts are incorporated. This signal model is com- 

plex and can be regarded as a general version of those in [8,13–

15] . By combining the established signal model and the prob- 

ability distribution of the observer location uncertainties, two 

ML-based functions are formulated for an unknown signal and 

a known signal with unknown transmission time. The proposed 

DPDs can exploit the location information contained in the an- 

gles, time delays and Doppler shifts, and minimize the effect of 

observer location errors. 
• To solve the prescribed ML-based functions, which are nonlin- 

early related to a variety of unknown parameters, we develop 

two alternating iteration schemes, one for a known signal and 

one for an unknown signal. In the alternating iteration proce- 

dures, two sets of parameters, namely, the positions and veloci- 

ties of the observers, and other parameters including the source 

position, are updated alternately. A by-product of the alternat- 

ing iteration is that we can decouple the updating of all ob- 

server locations and velocities into the updating of the location 

and velocity for each observer. Additionally, iterative methods 

are designed and employed to update each set of parameters 

instead of the commonly used grid search, which makes our 

method practically more attractive. 
• We provide a detailed derivation of the compressed CRB of the 

source position estimation based on the received signal model 

in the presence of observer location errors. The position-related 

block of the CRB with observer location errors is proved to be 

lower bounded by the associated CRB without observer location 

errors. 

The paper is organized as follows. Section 2 presents the no- 

tations used throughout this paper. Section 3 describes the signal 

model and formulates the problem. In Section 4 , the DPD meth- 

ods are proposed for the unknown and known signal waveforms. 

Section 5 derives the CRB expression. In Section 6 , we present two 

series of simulation results and analyze them. Finally, the conclu- 

sion is drawn in Section 7 . 

2. Notations 

In this paper, boldface italic upper-case letter denotes matrix 

and boldface italic lower-case letter signifies vector. In addition, 

{ · } ∗, { · } T , and { · } H stand for the conjugate, transpose, and con- 

jugate transpose, respectively. Operators blkdiag{ · } and diag{ · } in- 

dicate the compositions of a block diagonal matrix and diagonal 

matrix. Operator vec{ · } is the “vectorization” operator that turns 

a matrix into a vector by stacking the columns of a matrix one 

below the other. Furthermore, � is the Kronecker matrix product, 

tr{ · } and E [ ·] are the trace and expectation, respectively, Re {·} and 

Im {·} signify the real and imaginary parts, respectively, ‖ · ‖ 2 and 

‖ · ‖ F represent the Euclidean norm and Frobenius norm, respec- 

tively, [ · ] n and [ · ] n, m 

are the n th element of a vector and the 

n,m th entry of a matrix, respectively, and 

˙ X and Ẍ indicate the 

first-order and second-order partial derivatives of X , respectively. 

Finally, x ( a ) denotes the updated x in the last update, and x ( b ) de- 

notes the estimation of x in the on-going update. 

For convenience, we provide the main notations used through- 

out this paper in Table 1 . 

3. Signal model and problem formulation 

3.1. Signal model over multiple moving arrays 

Let us consider the scenario in which a stationary transmitter 

is intercepted by L observer arrays mounted on fast-moving plat- 

forms and each moving array is composed of M sensors. The trans- 

mitter is assumed to radiate a signal in the far field of the moving 

arrays with a frequency centered at f c , which is the nominal trans- 

mitted frequency and thus is known to the observers. We denote 

the transmitter position by a D × 1 vector of coordinates p ∈ R 

D ×1 . 

The observers intercept the transmitted signal during their move- 

ments and collect batches of data in K short intervals. Considering 
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